AUXIER & ASSOCIATES, INC.

Westlake Landfill Soil

STANDARD LEVEL IV REPORT OF ANALYSIS

WORK ORDER #16-03102-OR

April 28, 2016

EBERLINE ANALYTICAL/OAK RIDGE LABORATORY OAK RIDGE, TN

TABLE OF CONTENTS

SECTION	DESCRIPTION	PAGE
I	Chain of Custody	0004
II	Sample Acknowledgement	0009
ш	Case Narrative	0012
IV	Analytical Results Summary	0016
\mathbf{v}	Analytical Standards	0021
VI	Quality Control Sample Results Summary	0038
VII	Laboratory Technician's Notes & Runlogs	0045
VIII	Analytical Data (Isotopic Uranium)	0062
IX	Analytical Data (Isotopic Thorium)	0112
X	Analytical Data (Gamma Spectroscopy)	0165
	Last Page	0409

STANDARD OPERATING PROCEDURE

Sample Receiving

MP-001, Rev. 15 Effective: 2/2/15 Page 14 of 15

Eberline Services – Oak Ridge Laboratory LABORATORY DATA SUPPORT CHECKLIST

MP-001-3

Date for Partial	Initials	Date	Initials	Checklist Items			
		3-21-16	566	Sample Log-In			
		4/13/14	, KBS	Data Compilation	n		
		4-20-16	MI	First Technical D	ata Review		
	:	4/20/16	lest	Second Technic	al Data Review		
		04/201	16 Eut	Data Entry/Elect	ronic Deliverable		
		04(26	16 EUT	Case Narrative			
		4/27/1	6XB1	Electronic Delive			
		4/27/1	a elsk	Samples Analyz Yes?	ed within Holding Time		
		4/27/16	ust	QA/QC Review			
		04/13/10	ENT	Client in Possession of Data Electronic or Hard Copy			
			J	Invoiced by Labo			
Technical/Clerical	Corrections	s, Signatur	es Needed, P	roblems, Etc	Date/Initials		
kage approved by:			> \	Al	IBlis		
	Laborato	ory Manage	. ()	Da)	te		

SECTION I CHAIN OF CUSTODY

Chain of Custody Record

Nº_____

Eberline Services 601 Scarboro Road Oak Ridge, TN 37830 (865) 481-0683 Phone - (865) 483-4621 Fax

Project Name: Wex Lake NCC Stormwater	Project Nurr						7	9/	8/8		7	7	7	7	/		_ 1	
Send Report To: Paul Rolasco - EMSI	Sampler (Pr	Sampler (Print Name): Jon Willums / FEI				XXX Analysis Rowester XXX Control Control XXX Control XX Control					Page of		-of					
Address:	Sampler (Pr	Sampler (Print Name):				Trest	()	E C	极	s /	/ /					REC'D MAR 1	/REC'D MAR 1 8 2016	
	Shipment M	iethod: Cou	irier			œ/ .	येष	/ الخبر	ŧ,						\int_{0}^{∞}	$/\sqrt{16-031}$		
	Airbill Numb	oer: No	A		Pally		3/\s	<u>ه</u> / و		/ ,	/ /	/ /	Ι,	/ ,	/ ,	Purchase	UZ	
Phone:	Laboratory	Receiving:			4/	4/	\ `?\	/	7				-/			Order #:		
Fax:					/	Ĭ.,	<i>\$</i>	<u>\$</u> /		/						Comments, Special	Lab Samp	le ID
Field Sample ID	Sample Date	Sample Time	Sample Matrix	Number of Containers	11	Y />	$/\!\!/ \!\!\! \subset$	7		/		/	/_/			Instructions, etc.	(to be complete	
Sediment 2016-03-16A 4	3/16/16	13 3 5	So.1	1	χ.	χ	X					_			_			
Sediment 2016-03-16B 5	3116/16	1355	Soil	1	ý	Ϋ́,	χ											
Sediment 2016-03-16B DUP 6	3/10/16	1355	So.1	1	X	X	7											
				<u> </u>						,								
					<u></u>	<u> </u>												
																		<u> </u>
																		-,,,,
															-			
								T								_		
					1		T	1										
	<u> </u>				1	1	 	1										
		 	 		1		+	1										
			<u> </u>		-	1	1	1										
		7		_	+	 	+-	1-		,				<u> </u>				
Relinquished by: (Signature)	Received by:	(Signature)	<u> </u>	Date:		Time	e:	ا s	ample	Cus	todiar	n Rer	narks	s (Co	raple	ted By Laboratory):	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
(total desprise m) - (m. 9 - min - 1 - 1	_	-	C 20 /	3](6](Date:	4	68	w	i	ONOC	-			umar		L	Sample F	<u> </u>	
Relinguished by: (Signature)	First Co	(Signature)	· 14 /	Date:		6e		-	41.00	1	,	[D.w.	utine	· ~	- 1	Total # Containers Received	?	
1 /Mm	Received by:	با منت ما	2,	(3/12) Date:	16	Si	?vai	7 6	.evel .evel				utin a Hour			COC Seals Present? COC Seals Intact?		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Rouguished by: (Signature)	Received by:	(Signature)	~\	Date		Tim	e :	٦ <u>ـ</u>	.evel				Veck		_	Received Containers Intact?		
					Ì	Other		er 🗆 Other		Temperature?								

Internal Chain of Custody

Work Order #	16-03102
Lab Deadline	4/12/2016
Analysis	UUISO - Level 4
Sample Matrix	Soil/Solid

Sample Fraction	HP 210 / 270 Detector Activity	Storage Location
04	36	K1.4
05	38	K1.4
06	34	K1.4
VIII - III - AAAAAAAAAAAA		
VINITE OF THE PROPERTY OF THE		
		± — i di programma
AAST PLATE TO THE REST OF THE PARTY OF THE P		
AND THE PARTY OF T		As the recognition again
- AMAINEMAN		
	Fraction 04 05	Fraction Detector Activity 04 36 05 38

		Location	n (circle	one)		Initials	Date
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room 💍 🕻 🌣	Veryscij	3-22-16
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room 🕳 🖔	beng sas	3-23.16
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room	NO17e	3123/160810
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room	LOIR	H1416010
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room	THE NO CH	elib our
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room	sul Ma	146 0808
Received by .	Sample Storage	Rough Prep	Prep	Separations	Count Room		VIII Cary
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room	VB 4/11/	16 our
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room	Allian Carlotta and Allian State and All	
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Received by	Sample Storage	Rough Prep	Ргер	Separations	Count Room		
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		

Internal Chain of Custody

Work Order #	16-03102
Lab Deadline	4/12/2016
Analysis	ThISO - Level 4
Sample Matrix	Soil/Solid

Comments	Sample Fraction	HP 210 / 270 Detector Activity	Storage Location
	04	36	K1.4
	05	38	K1.4
	06	34	K1.4
			a de distribit de cela constitución con constitución de consti
			7. W. A. W.
REPORT ON DRY WEIGHT BASIS			
			A STEEL OF THE PROPERTY.

		Locatio	on (circle	one)		Initials	Date
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room 0900	keng sei	3-22-16
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room Of U	Hungin	3.23.16
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room	MOIR	3/38/14/08/1
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room	Jalle	4/6/16040
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room	my No U	616 cree
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room	TON MY	46 0957
Received by	Sample Storage	Rough Prep	Prep	Separations	ount Room	70	<u>_</u>
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	ount Room	KB 413	luc 1750
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		

Internal Chain of Custody

Work Order #	16-03102
Lab Deadline	4/12/2016
Analysis	Gamma - Level 4
Sample Matrix	Soil/Solid

Comments	Sample Fraction	HP 210 / 270 Detector Activity	Storage Location
	04	36	K1.4
	05	38	K1.4
21 day ingrowth – Report Ac228, Bi214, K40, Pa231, b210/212/214, Ra226 from Bi214, Ra228 from Ac228,Tl208 & Th234.	06	34	K1.4
REPORT ON DRY WEIGHT BASIS			

		Location	ı (circle d	one)		Initials	Date
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room 0900	Very Seig	3-22-46
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room 1235	Ky sug	3-23-14
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room	100 3/23	16 1240
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room	VB 4/13/19	1418
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room	MANAGEMENT AND	
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room	a garanga a 1/4 anakhiri Mahir Aramin na Amarang anga a a a a ini Mahir Mahimin Amaran ang anga anaka anaka	
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		

SECTION II SAMPLE ACKNOWLEDGEMENT

•		
ľ	111	
1	4	
		1
	n d	,
Č	4	

Aux	Client Name Contract/PO Project Type ier & Associates, Inc. WESTLAKE NCC Environmental Project Name Client WO Sample Disp			Date Received 03/21/2016 Lab Deadline 04/12/2016					Required Turnaround Days 28 Internal Deadline 04/15/2016				16-03102 Client Deadline																
	WESTLAKE NCC	WESTLAKE STORMWATER		Н		0	4/	<u>12</u>	/2	<u> 1</u>	6			0	4/	<u> 15</u>	/20)1	6		04/18/2016					10.172041			
Internal ID	Client ID	Sample Date	Matrix	Storage	Gamma	Thiso	osinn																						Ē
01	LCS	03/22/16	so	K1.4	х	х	х																	. !					3
02	BLANK	03/22/16	so	K1.4	X	х	х																						3
03	DUP	03/22/16	50	K1.4	Х	Х	Х																						3
04	SEDIMENT 2016-03-16A	03/16/16 13:35	50	K1.4	х	х	х												i]				3
05	SEDIMENT 2016-03-16B	03/16/16 13:55	so	K1.4	х	х	х																				\perp		3
06	SEDIMENT 2016-03-16B DUP	03/16/16 13:55	50	K1.4	Х	х	х																				ļ.		3
																											\perp		0
				***																									0
																													•
											1																		0
																													0
																													0
																													0
									<u> </u>																				0
			<u> </u>		İ															-									0
<u> </u>			ļ		 	1.		<u> </u>																					0
									İ																				0
		<u></u>										<u> </u>			_	-													0
			-								"-							-				<u> </u>							٥
			<u> </u>			_			 					_															0
		Totals Per Ana	lysis (n	on QA samples)	3	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0	0	0	
THE REPORT OF AN EASTA (ASSESSED A DESCRIPTION A		AND THE PROPERTY OF THE PASSES	STATE OF THE PARTY	***************************************	1	nvoic	е		unts Pa er & Ass		s, Inc.	***************************************	F	Repor	t Dat	a		Rosasc Manage	o P.E. ement	Suppo	rt, Inc.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
	EBERLINE SERVICES	601 Scar	Oak Ridge Laboratory 601 Scarboro Rd. Oak Ridge, TN 37830			Voice		9821 Knox	Cogdil ville, TI 375-366	Drive N 3793	#1					Voice		vood, C	CO 802		uite 406	i							
	Sample Log In Report	Voice: (8 Fax: (8		81-0683 183-4621		Fax Onta		865-6	375-367 ia Gree	7						Fax											<u></u>		
		1				Voice Fax			375-366 375-367																				

STANDARD OPERATING PROCEDURE

Sample Receiving

MP-001, Rev. 15 Effective: 2/2/15 Page 13 of 15

Eberline Services – Oak Ridge Laboratory

SAMPLE RECEIPT CHECKLIST MP-001-2

AMPLE MATRIX/MATRICES:	(CIRCI	E ONE O	R BOTH)
	AQUE	ous 👍	NON-AQUEOUS
ERE SAMPLES:	(CIRCI	E EITHER	R YES, NO, OR N
Received in good condition?	Ø	N	
If aqueous, properly preserved	Υ	N	N/A
ERE CHAIN OF CUSTODY SEALS:			
Present on outside of package?	Ø	N	
Unbroken on outside of package?	\bigcirc	N	
Present on samples?	\bigcirc	N	
Unbroken en comples?	(P)	N	
Unbroken on samples?			
Was chain of custody present upon sample receipt? THE RESPONSE TO ANY OF THE ABOVE IS NO, A DISC SR) HAS BEEN ISSUED.	(v)	N AMPLE RE	ECEIPT REPOR
Was chain of custody present upon sample receipt? THE RESPONSE TO ANY OF THE ABOVE IS NO, A DISC	(v)	_ .	ECEIPT REPOR

Radiochemistry Services

SECTION III

CASE NARRATIVE

EBERLINE ANALYTICAL CORPORATION
601 SCARBORO ROAD
OAK RIDGE, TENNESSEE 37830
PHONE (865) 481-0683
FAX (865) 483-4621

EBS-OR-40649

April 28, 2016

Cecilia Greene Auxier & Associates, Inc. 9821 Cogdill Road #1 Knoxville, TN 37932

CASE NARRATIVE Work Order # 16-03102-OR

SAMPLE RECEIPT

This work order contains three sediment samples received 03/18/2016. These samples were analyzed for Isotopic Uranium, Isotopic Thorium and Gamma Spectroscopy.

<u>CLIENT ID</u>	<u>LAB ID</u>
SEDIMENT 2016-03-16A	16-03102-04
SEDIMENT 2016-03-16B	16-03102-05
SEDIMENT 2016-03-16B DUP	16-03102-06

ANALYTICAL METHODS

Isotopic Uranium was analyzed using Method EML U-02 Modified. Isotopic Thorium was analyzed using Method EML Th-01 Modified. Gamma Spectroscopy was analyzed using Method LANL ER-130 Modified.

ANALYTICAL RESULTS

Combined Standard Uncertainty is reported at 2-sigma value.

Minimum Detectable Activity (MDA) values for data represented in this report are sample-specific. MDA measurements are determined based on factors and conditions including instrument settings, aliquot size and matrix type.

SPECIAL CIRCUMSTANCES

Results are reported on a "dry" weight basis.

ISOTOPIC URANIUM

Samples were prepared by removing representative aliquots from each sample followed by mixed acid digestions as appropriate. Uranium was selectively extracted by ion exchange. Uranium was eluted, micro-precipitated and mounted on micro-porous filter media. Sample activities were then determined by alpha spectroscopy using energy specific regions of interest for Uranium-234, Uranium-235 and Uranium-238. Chemical recovery was determined by the use of a Uranium-232 tracer. Activity of the Uranium-232 tracer was determined by alpha spectroscopy using an energy specific region of interest.

ANALYTICAL RESULTS CONTINUED

ISOTOPIC URANIUM CONTINUED

Samples demonstrated acceptable results for all Uranium analyses. Chemical recovery was acceptable for all samples. The Uranium-234, Uranium-235 and Uranium-238 method blank demonstrated acceptable results. Results for the Uranium-234 and Uranium-238 duplicate demonstrated an acceptable relative percent difference and normalized difference. Results for the Uranium-235 duplicate demonstrated a high relative percent difference; however, normalized difference is within acceptable limits for the analytical technique. Results for the Uranium-234 and Uranium-238 laboratory control sample demonstrated an acceptable percent recovery.

ISOTOPIC THORIUM

Samples were prepared by removing representative aliquots from each sample followed by mixed acid digestions as appropriate. Thorium was selectively extracted by ion exchange. Thorium was eluted, micro-precipitated and mounted on micro-porous filter media. Sample activities were then determined by alpha spectroscopy using energy specific regions of interest for Thorium-227, Thorium-228, Thorium-230 and Thorium-232. Chemical recovery was determined by the use of a Thorium-229 tracer. Activity of the Thorium-229 tracer was determined by alpha spectroscopy using an energy specific region of interest.

Samples demonstrated acceptable results for all Thorium analyses. Actinium-227 results were reported from Thorium-227 assuming secular equilibrium. Chemical recovery was acceptable for all samples. The Thorium-227, Thorium-228, Thorium-230 and Thorium-232 method blank demonstrated acceptable results. Results for the Thorium-228 and Thorium-232 duplicate demonstrated a high relative percent difference; however, normalized difference is within acceptable limits for the analytical technique. Results for the Thorium-230 duplicate demonstrated an acceptable relative percent difference and normalized difference. Results for the Thorium-228, Thorium-230 and Thorium-232 laboratory control sample demonstrated an acceptable percent recovery.

GAMMA SPECTROSCOPY

Samples were dried, homogenized and placed into appropriate gamma spectroscopy geometry containers. Samples were then sealed for 21 days to allow for ingrowth of Radon-222 and progeny. Samples were counted on High Purity Germanium (HPGe) gamma ray detectors. Energy lines from Lead-214 and Bismuth-214 were analyzed for determinations of Radium-226 activity.

Samples demonstrated acceptable results for all gamma-emitting radionuclides as reported. The method blank demonstrated acceptable results for all radionuclides as reported. Results for the Bismuth-214, Potassium-40 and Lead-214 replicate demonstrated an acceptable relative percent difference and normalized difference. Results for the Cobalt-60 and Cesium-137 laboratory control sample demonstrated an acceptable percent recovery.

CERTIFICATION OF ACCURACY

I certify that this data report is in compliance with the terms and conditions of the Purchase Order, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the cognizant project manager or his/her designee to be accurate as verified by the following signature.

M.R. McDougall Laboratory Manager

Date: 4/28/2016

Eberline Analytical wants and encourages your feedback regarding our performance providing radioanalytical services. Please visit http://www.eberlineservices.com/client.htm to provide us with feedback on our services.

SECTION IV ANALYTICAL RESULTS SUMMARY

					Report To:	·····			ν	Vork Order L	Details:			
	.15	Annlystiani	Cecilia	Greene	-			SDG:	16	-03102	2			
Ebe	riine	Analytical	Auxier	& Assoc	iates. Ind			Purchase Order:	WE	STLAKE	NCC			
Eina	l Pan	ort of Analysis		ogdill Ro				Analysis Category:	EN۱	/IRONM	ENTAL			
l" II I a	ıı ızeb	OIT OI Allalysis		lle, TN 3		<u> </u>		Sample Matrix:	SO	.p.a.a. r.a. wardrahad W411711			4-14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	74444444
Lab	Sample	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Aпаlyte	Method	Result	cu	csu	MDA	cv	Report Units
ID	Type		03/22/16 00:00	3/21/2016	4/11/2016	16-03102	Cobalt-60	LANL ER-130 Modified	1.37E+02	5.48E+00				pCi/g
16-03102-01	LCS	KNOWN	03/22/16 00:00	3/21/2016	4/11/2016	16-03102	Cesium-137	LANL ER-130 Modified	8.69E+01	3.48E+00	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			pCi/g
16-03102-01	LCS	KNOWN	03/22/16 00:00	3/21/2016	4/11/2016	16-03102	Cobalt-60	LANL ER-130 Modified	1.38E+02	7.79E+00	1.05E+01	7.44E-01	5.62E-01	pCi/g
16-03102-01	LCS	SPIKE	03/22/16 00:00	3/21/2016	4/11/2016	16-03102	Cesium-137	LANL ER-130 Modified	8.88E+01	7.27E+00	8.58E+00	9.37E-01	4.64E-01	pCi/g
16-03102-01	LCS	SPIKE	03/22/10 00:00	3/2 1/2010	411172010	10 00 102	V			1				
		DI ANIZ	03/22/16 00:00	3/21/2016	4/13/2016	16-03102	Actinium-228	LANL ER-130 Modified	8.69E-02	7.85E-02	7.86E-02	1.64E-01	7.23E-02	pCi/g
16-03102-02	MBL	BLANK	03/22/16 00:00	3/21/2016	4/13/2016	16-03102	Bismuth-214	LANL ER-130 Modified	-6.16E-04	4.64E-02	4.64E-02	7.39E-02	3.29E-02	pCi/g
16-03102-02	MBL	BLANK	03/22/16 00:00	3/21/2016	4/13/2016	16-03102	Potassium-40	LANL ER-130 Modified	-3.82E-01	3.60E-01	3.61E-01	3.28Ё-01	1.27E-01	pCi/g
16-03102-02	MBL	BLANK	03/22/16 00:00	3/21/2016	4/13/2016	16-03102	Protactinium-231	LANL ER-130 Modified	4.98E-02	7.34E-01	7.34E-01	1.15E+00	5.29E-01	pCi/g
16-03102-02	MBL	BLANK	03/22/16 00:00	3/21/2016	4/13/2016	16-03102	Lead-210	LANL ER-130 Modified	4.51E-01	4.95E-01	4.95E-01	7.39E-01	3.49E-01	pCi/g
16-03102-02	MBL	BLANK	03/22/16 00:00	3/21/2016	4/13/2016	16-03102	Lead-212	LANL ER-130 Modified	3.90E-02	3.50E-02	3.50E-02	6.07E-02	2.84E-02	pCi/g
16-03102-02	MBL	BLANK	03/22/16 00:00	3/21/2016	4/13/2016	16-03102	Lead-214	LANL ER-130 Modified	1.31E-02	5.06E-02	5.06E-02	7.74E-02	3.55E-02	pCi/g
16-03102-02	MBL	BLANK	03/22/16 00:00	3/21/2016	4/13/2016	16-03102	Radium-226	LANL ER-130 Modified	-6.16E-04	4.64E-02	4.64E-02	7.39E-02	3.29E-02	pCi/g
16-03102-02	MBL.	BLANK	03/22/16 00:00	3/21/2016	4/13/2016	16-03102	Radium-228	LANL ER-130 Modified	8.69E-02	7.85E-02	7.86E-02	1.64E-01	7.23E-02	pCi/g
16-03102-02	MBL	BLANK	03/22/16 00:00	3/21/2016	4/13/2016	16-03102	Thorium-234	LANL ER-130 Modified	1.32E-01	4.28E-01	4.28E-01	5.89E-01	2.79E-01	pCi/g
16-03102-02	MBL	BLANK		3/21/2016		16-03102	Thallium-208	LANL ER-130 Modified	3.99E-02	5.67E-02	5.67E-02	1.07E-01	4.74E-02	pCi/g
16-03102-02	MBL	BLANK	03/22/16 00:00	3/21/2010	4/13/2010	10-00102	Thansan 200		 	1				
			03/16/16 13:35	3/21/2016	4/13/2016	16-03102	Actinium-228	LANL ER-130 Modified	9.79E-01	3.27E-01	3.31E-01	5.59E-01	2.62E-01	pCi/g
16-03102-03	DUP	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	-	16-03102	Bismuth-214	LANL ER-130 Modified	1.86E+00	2.34E-01	2.53E-01	3.73E-01	1.79E-01	pCi/g
16-03102-03		SEDIMENT 2016-03-16A		3/21/2016			Potassium-40	LANL ER-130 Modified	1.69E+01	2.40E+00	2.55E+00	1,52E+00	6.96E-01	pCi/g
16-03102-03		SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016			Protactinium-231	LANL ER-130 Modified	9.51E-01	2.17E+00	2.17E+00	3.74E+00	1.79E+00	pCi/g
16-03102-03		SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016			Lead-210	LANL ER-130 Modified	4.78E+00	1.80E+00	1.82E+00	2.74E+00	1.34E+00	pCi/g
16-03102-03		SEDIMENT 2016-03-16A	03/16/16 13:35				Lead-212	LANL ER-130 Modified	1.35E+00	1.80E-01	1.93E-01	3.11E-01	1.52E-01	pCi/g
16-03102-03		SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016			Lead-212	LANL ER-130 Modified	1.81E+00		2.58E-01	2.92E-01	1.41E-01	pCi/g
16-03102-03		SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016			Radium-226	LANL ER-130 Modified	1.86E+00	·	2.53E-01	3,73E-01	1.79E-01	pCi/g
16-03102-03	DUP	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016			Radium-228	LANL ER-130 Modified	9.79E-01	3.27E-01		5.59E-01	2.62E-01	pCi/g
16-03102-03	DUP	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016			Thorium-234	LANL ER-130 Modified	2.18E+00			2.98E+00	1.46E+00	pCi/g
16-03102-03	DUP	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016				LANL ER-130 Modified	1.06E+00		1.99E-01	5.65E-02	-{	pCi/g
16-03102-03	DUP	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/13/2016	16-03102	Thallium-208	LAIVE EX-130 Modified	1.002.00	1.000			<u>, l</u>	

CU=Counting Uncertainty;CSU=Combined Standard Uncertainty (2-sigma);MDA=Minimal Detected Activity;LCS=Laboratory Control Sample; MBL=Blank; DUP=Duplicate; TRG=Normal Sample; DO=Duplicate Original; CV=Critical Value

					Report To:				V	Vork Order	Details:			
	I		Cecilia	Greene				SDG:	16	-0310	2			
Ebei	riine	Analytical			iates, Inc			Purchase Order:	WE	STLAKE	NCC			
Fina	I Rand	ort of Analysis		9821 Cogdill Road, Suite 1			***************************************	Analysis Category:	EN\	/IRONN	IENTAL			
I IIIa	ı ızeb	of of Analysis		lle, TN 3				Sample Matrix:	SO					
		Client	Sample	Receipt	Analysis	Batch			Daniell	CU	csu	MDA	cv	Report
Lab ID	Sample Type	ID	Date	Date	Date	ID	Analyte	Method	Result	CO	CSU			Units
16-03102-04	DO	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/13/2016	16-03102	Actinium-228	LANL ER-130 Modified	1.30E+00	2.92E-01	3.00E-01	5.70E-01	2.68E-01	pCi/g
16-03102-04	DO	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/13/2016	16-03102	Bismuth-214	LANL ER-130 Modified	1.70E+00	2.29E-01	2.45E-01	1.01E-01	1.11E-01	pCi/g
16-03102-04	DO	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/13/2016	16-03102	Potassium-40	LANL ER-130 Modified	1.59E+01	2.22E+00	***************************************	1.00E+00	4.36E-01	pCi/g
16-03102-04	DO	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/13/2016	16-03102	Protactinium-231	LANL ER-130 Modified	5.84E-01	1.00E+00	ļ	3.94E+00	1.89E+00	pCi/g
16-03102-04	DO	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/13/2016	16-03102	Lead-210	LANL ER-130 Modified	3.32E+00	1		3.49E+00	1.71E+00	pCi/g
16-03102-04	DO	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/13/2016	16-03102	Lead-212	LANL ER-130 Modified	1.21E+00	1.75E-01	1.86E-01	3.42E-01	1.68E-01	pCi/g
16-03102-04	DO	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/13/2016	16-03102	Lead-214	LANL ER-130 Modified	1.86E+00	2.42E-01	2.60E-01	3.36E-01	1.63E-01	pCi/g
	00	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/13/2016	16-03102	Radium-226	LANL ER-130 Modified	1.70E+00	2.29E-01	2.45E-01	1.01E-01	1.11E-01	pCi/g
16-03102-04	DO	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/13/2016	16-03102	Radium-228	LANL ER-130 Modified	1.30E+00	2.92E-01	3,00E-01	5.70E-01	2.68E-01	pCi/g
16-03102-04	DO	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/13/2016	16-03102	Thorium-234	LANL ER-130 Modified	1.43E+00	1.67E+00	1.67E+00	2.24E+00	1.09E+00	pCi/g
16-03102-04	DO	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/13/2016	16-03102	Thallium-208	LANL ER-130 Modified	9.38E-01	2.15E-01	2.20E-01	5.65E-02	2.13E-01	pCi/g
16-03102-04	טט	SEDIMENT 2010-03-10A	20,10,10 10.00					***************************************						
	TD0	SEDIMENT 2016-03-16B	03/16/16 13:55	3/21/2016	4/13/2016	16-03102	Actinium-228	LANL ER-130 Modified	1.08E+00	2.05E-01	2.12E-01	3.80E-01	1.76E-01	pCi/g
16-03102-05	TRG	SEDIMENT 2016-03-16B	03/16/16 13:55	3/21/2016	4/13/2016	16-03102	Bismuth-214	LANL ER-130 Modified	1.13E+00	1.78E-01	1.87E-01	8.31E-02	1,18E-01	pCi/g.
16-03102-05	TRG	SEDIMENT 2016-03-16B	03/16/16 13:55	3/21/2016	4/13/2016	16-03102	Potassium-40	LANL ER-130 Modified	1.32E+01	1.89E+00	2.00E+00	1.12E+00	5.04E-01	pCi/g
16-03102-05	TRG	SEDIMENT 2016-03-16B	03/16/16 13:55	3/21/2016	4/13/2016	16-03102	Protactinium-231	LANL ER-130 Modified	1.15E+00	1.64E+00	1.64E+00	2.82E+00	1.35E+00	pCi/g
16-03102-05	TRG		03/16/16 13:55	3/21/2016	4/13/2016	16-03102	Lead-210	LANL ER-130 Modified	2.84E+00	1.41E+00	1.41E+00	2.22E+00	1.08E+00	pCi/g
16-03102-05	TRG	SEDIMENT 2016-03-16B	03/16/16 13:55	3/21/2016	4/13/2016	16-03102	Lead-212	LANL ER-130 Modified	9.74E-01	1.43E-01	1.52E-01	2.47E-01	1.21E-01	pCi/g
16-03102-05	TRG	SEDIMENT 2016-03-16B	03/16/16 13:55	3/21/2016	4/13/2016	16-03102	Lead-214	LANL ER-130 Modified	1.20E+00	1.50E-01	1.62E-01	2.48E-01	1.19E-01	pCi/g
16-03102-05	TRG	SEDIMENT 2016-03-16B	03/16/16 13:55	3/21/2016	4/13/2016	16-03102	Radium-226	LANL ER-130 Modified	1.13E+00	1.78E-01	1.87E-01	8.31E-02	1.18E-01	pCi/g
16-03102-05	TRG	SEDIMENT 2016-03-16B	03/16/16 13:55	3/21/2016	4/13/2016	16-03102	Radium-228	LANL ER-130 Modified	1.08E+00	2.05E-01	2.12E-01	3.80E-01	1.76E-01	pCi/g
16-03102-05	TRG	SEDIMENT 2016-03-16B	03/16/16 13:55	3/21/2016		16-03102	Thorium-234	LANL ER-130 Modified	1.09E+00	1.46E+00	1.46E+00	1.91E+00	9.30E-01	pCi/g
16-03102-05	TRG	SEDIMENT 2016-03-16B	03/16/16 13:55	3/21/2016	<u> </u>	16-03102	Thallium-208	LANL ER-130 Modified	7.01E-01	1.50E-01	1.54E-01	4,67E-02	1.91E-01	pCi/g
16-03102-05	TRG	SEDIMENT 2016-03-16B	03/70/10 13:33	0,21,2010										
			03/16/16 13:55	3/21/2016	4/13/2016	16-03102	Actinium-228	LANL ER-130 Modified	9.22E-01	2.43E-01	2.47E-01	5.07E-01	2.40E-01	pCi/g
16-03102-06	TRG	SEDIMENT 2016-03-16B DUP	03/16/16 13:55	3/21/2016		16-03102	Bismuth-214	LANL ER-130 Modified	1.32E+00	2.05E-01	2.16E-01	2.42E-01	1.15E-01	pCi/g
16-03102-06	TRG	SEDIMENT 2016-03-16B DUP	03/16/16 13:55	3/21/2016		16-03102	Potassium-40	LANL ER-130 Modified	1.43E+01	1.91E+00	2.05E+00	4.63E-01	1.78E-01	pCi/g
16-03102-06	TRG	SEDIMENT 2016-03-16B DUP		3/21/2016		16-03102	Protactinium-231	LANL ER-130 Modified	1.09E+00	2.06E+00	2.06E+00	3.14E+00	1.50E+00	pCi/g
16-03102-06	TRG	SEDIMENT 2016-03-16B DUP	03/16/16 13:55	3/21/2016		16-03102	Lead-210	LANL ER-130 Modified	1.59E+00	1.61E+00	1.61E+00	2.68E+00	1.31E+00	pCi/g
16-03102-06	TRG	SEDIMENT 2016-03-16B DUP	03/16/16 13:55	3/21/2016		16-03102	Lead-212	LANL ER-130 Modified	1.09E+00			2.68E-01	1.31E-01	pCi/g
16-03102-06	TRG	SEDIMENT 2016-03-16B DUP	03/16/16 13:55	3/21/2016		16-03102	Lead-214	LANL ER-130 Modified	1.38E+00		1.83E-01	2.48E-01	1.19E-01	pCi/g
16-03102-06	TRG	SEDIMENT 2016-03-168 DUP	03/16/16 13:55	3/21/2016		16-03102	Radium-226	LANL ER-130 Modified	1.32E+00	2.05E-01	2.16E-01	2.42E-01	1.15E-01	pCi/g
16-03102-06	TRG	SEDIMENT 2016-03-16B DUP	03/16/16 13:55			16-03102	Radium-228	LANL ER-130 Modified	9,22E-01		2.47E-01	5.07E-01	2.40E-01	pCi/g
16-03102-06	TRG	SEDIMENT 2016-03-16B DUP	03/16/16 13:55	3/21/2016		16-03102	Thorium-234	LANL ER-130 Modified	2.01E+00		1.71E+00	2.83E+00	1.39E+00	pCi/g
16-03102-06	TRG	SEDIMENT 2016-03-16B DUP	03/16/16 13:55	3/21/2016			Thellium-208	LANL ER-130 Modified	7.31E-01		-	4.72E-02	1.97E-01	pCi/g
16-03102-06	TRG	SEDIMENT 2016-03-168 DUP	03/16/16 13:55	3/21/2016	4/13/2016	10-03102	THEIREIN-200			<u> </u>				

CU=Counting Uncertainty; CSU=Combined Standard Uncertainty (2-sigma); MDA=Minimal Detected Activity; LCS=Laboratory Control Sample; MBL=Blank; DUP=Duplicate; TRG=Normal Sample; DO=Duplicate Original; CV=Critical Value

						Vork Order I			·.					
!!!! !		Analytical	Cecilia	Greene				SDG:	16	03102	2			
Epei	riine	Analytical		& Assoc	iates. Ind	3.		Purchase Order:	WE	STLAKE	NCC			
Fina	Ren	ort of Analysis		ogdill Ro			······································	Analysis Category:	EΝ\	/IRONN	IENTAL	AL.		
, iiia	i izeb	or or Analysis		lle, TN 37				Sample Matrix:	SO					
Lab ID	Sample	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	cu	CSU	MDA	cv	Report Units
16-03102-02	Type MBL	BLANK	03/22/16 00:00	3/21/2016	4/8/2016	16-03102	Actinium-227	EML Th-01 Modified	1.15E-01	8.04E-02	8.16E-02	7.52E-02	1.19E-02	pCi/g
16-03102-02	DUP	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/8/2016	16-03102	Actinium-227	EML Th-01 Modified	3.11E-01	1.55E-01	1.60E-01	1.26E-01	3.57E-02	pCi/g
16-03102-03	DO	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/8/2016	16-03102	Actinium-227	EML Th-01 Modified	1.95E-01	1.03E-01	1.05E-01	5,96E-02	5.60E-03	pCi/g
16-03102-04	TRG	SEDIMENT 2016-03-16B	03/16/16 13:55	3/21/2016	4/8/2016	16-03102	Actinium-227	EML Th-01 Modified	3.03E-01	1.45E-01	1,50E-01	7,38E-02	6.95E-03	pCi/g
16-03102-05	TRG	SEDIMENT 2016-03-16B DUP	03/16/16 13:55	3/21/2016	4/8/2016	16-03102	Actinium-227	EML Th-01 Modified	2.01E-01	1.26E-01	1.28E-01	1.26E-01	3.57E-02	pCi/g
10-03102-00	11.0	0					***************************************							
16-03102-01	LCS	KNOWN	03/22/16 00:00	3/21/2016	4/8/2016	16-03102	Thorium-228	EML Th-01 Modified	4.79E+00	1.72E-01				pCi/g
16-03102-01	LCS	SPIKE	03/22/16 00:00	3/21/2016	4/8/2016	16-03102	Thorium-228	EML Th-01 Modified	5.32E+00	8.03E-01	9.47E-01	7.41E-02	1.16E-02	pCi/g
16-03102-01	MBL	BLANK	03/22/16 00:00	3/21/2016	4/8/2016	16-03102	Thorium-228	EML Th-01 Modified	-1.46E-02	2.64E-02	2.65E-02	8.07E-02	1.56E-02	pCi/g
16-03102-02	DUP	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/8/2016	16-03102	Thorium-228	EML Th-01 Modified	1.06E+00	3,15E-01	3.30E-01	1.25E-01	3.52E-02	
16-03102-04	DO	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/8/2016	16-03102	Thorium-228	EML Th-01 Modified	6.77E-01	2.10E-01	2.20E-01	8.84E-02	1.96E-02	·
16-03102-04	TRG	SEDIMENT 2016-03-16B	03/16/16 13:55	3/21/2016	4/8/2016	16-03102	Thorium-228	EML Th-01 Modified	1.08E+00	3.13E-01	3.29E-01	8.68E-02	1,15E-02	
16-03102-06	TRG	SEDIMENT 2016-03-16B DUP	03/16/16 13:55	3/21/2016	4/8/2016	16-03102	Thorium-228	EML Th-01 Modified	6.18E-01	2.29E-01	2.36E-01	1.48E-01	5.60E-02	pCi/g
16-03102-06	1130	CEDIMENT 2010 TO 152 2 5.												
16-03102-01	LCS	KNOWN	03/22/16 00:00	3/21/2016	4/8/2016	16-03102	Thorium-230	EML Th-01 Modified	5.34E+00	1.44E-01				pCi/g
16-03102-01	LCS	SPIKE	03/22/16 00:00	3/21/2016	4/8/2016	16-03102	Thorium-230	EML Th-01 Modified	6.13E+00	9.00E-01	1,18E+00	5.92E-02	6.50E-02	pCi/g
16-03102-02	MBL	BLANK	03/22/16 00:00	3/21/2016	4/8/2016	16-03102	Thorium-230	EML Th-01 Modified	1.65E-01	9.38E-02	9.60E-02	6.44E-02	6.61E-02	<u> </u>
16-03102-03	DUP	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/8/2016	16-03102	Thorium-230	EML Th-01 Modified	8.36E+00	1.58E+00			9.07E-02	
16-03102-04	DO	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/8/2016	16-03102	Thorium-230	EML Th-01 Modified	6.98E+00	<u> </u>	·		6.76E-02	
16-03102-05	TRG	SEDIMENT 2016-03-16B	03/16/16 13:55	3/21/2016	4/8/2016	16-03102	Thorium-230	EML Th-01 Modified	4.53E+00	9,21E-01	1.08E+00		8.40E-02	
16-03102-06	TRG	SEDIMENT 2016-03-16B DUP	03/16/16 13:55	3/21/2016	4/8/2016	16-03102	Thorium-230	EML Th-01 Modified	4.39E+00	9.09E-01	1.06E+00	1.13E-01	1.01E-01	pCi/g
10-03102-00	ļ												<u> </u>	
16-03102-01	LCS	KNOWN	03/22/16 00:00	3/21/2016	4/8/2016	16-03102	Thorium-232	EML Th-01 Modified	4.79E+00		<u> </u>	ļ		pCi/g
16-03102-01	LCS	SPIKE	03/22/16 00:00	3/21/2016	4/8/2016	16-03102	Thorium-232	EML Th-01 Modified	4.78E+00	 	8,49E-01	5.91E-02	5.48E-03	
16-03102-01	MBL	BLANK	03/22/16 00:00	3/21/2016	4/8/2016	16-03102	Thorium-232	EML Th-01 Modified	-4.16E-03				<u> </u>	
16-03102-02	DUP	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/8/2016	16-03102	Thorium-232	EML Th-01 Modified	1.09E+00		3.29E-01	9.18E-02	1.58E-03	
16-03102-03	DO	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/8/2016	16-03102	Thorium-232	EML Th-01 Modified	8.19E-01	2.33E-01	2.44E-01	6.37E-02	7.42E-03	
16-03102-04	TRG	SEDIMENT 2016-03-16B	03/16/16 13:55	3/21/2016	4/8/2016	16-03102	Thorium-232	EML Th-01 Modified	7.36E-01	2.42E-01	2.51E-01	9.01E-02	- 	
16-03102-05	TRG	SEDIMENT 2016-03-16B DUP	03/16/16 13:55	3/21/2016	4/8/2016	16-03102	Thorium-232	EML Th-01 Modified	8.41E-01	2.69E-01	2.79E-01	1.19E-01	3.28E-02	pCi/g

CU=Counting Uncertainty; CSU=Combined Standard Uncertainty (2-sigma); MDA=Minimal Detected Activity; LCS=Laboratory Control Sample; MBL=Blank; DUP=Duplicate; TRG=Normal Sample; DO=Duplicate Original; CV=Critical Value

					Report To:				·	Nork Order	Details:			
Eho	rline	Analytical	Cecilia	Greene				SDG:	16	-0310	2			
		-	Auxier	& Assoc	iates, Inc	3.		Purchase Order:	WE	STLAKE	NCC			
Fina	l Rep	ort of Analysis	9821 C	ogdill Ro	ad, Suite	e 1	**************************************	Analysis Category: ENVIRONMENTAL						
		,	Knoxville, TN 37932					Sample Matrix:	so					
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	cu	csu	MDA	cv	Report Units
16-03102-01	LCS	KNOWN	03/22/16 00:00	3/21/2016	4/11/2016	16-03102	Uranium-234	EML U-02 Modified	7.31E+00	2.63E-01				pCi/g
16-03102-01	LCS	SPIKE	03/22/16 00:00	3/21/2016	4/11/2016	16-03102	Uranium-234	EML U-02 Modified	6.27E+00	9.07E-01	1.01E+00	8,21E-02	3.18E-02	pCi/g
16-03102-02	MBL	BLANK	03/22/16 00:00	3/21/2016	4/11/2016	16-03102	Uranium-234	EML U-02 Modified	1.01E-01	8.04E-02	8.08E-02	8.61E-02	2.12E-02	pCi/g
16-03102-03	DUP	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/11/2016	16-03102	Uranium-234	EML U-02 Modified	1.17E+00	3.15E-01	3.26E-01	1.03E-01	2.54E-02	pCi/g
16-03102-04	DO	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/11/2016	16-03102	Uranium-234	EML U-02 Modified	9.48E-01	2.56E-01	2.64E-01	8.19E-02	3.14E-02	pCi/g
16-03102-05	TRG	SEDIMENT 2016-03-16B	03/16/16 13:55	3/21/2016	4/11/2016	16-03102	Uranium-234	EML U-02 Modified	9.34E-01	2.66E-01	2.74E-01	1.05E-01	4.23E-02	pCi/g
16-03102-06	TRG	SEDIMENT 2016-03-16B DUP	03/16/16 13:55	3/21/2016	4/11/2016	16-03102	Uranium-234	EML U-02 Modified	9.29E-01	2.78E-01	2.86E-01	1.34E-01	6.03E-02	pCi/g
16-03102-01	LCS	SPIKE	03/22/16 00:00	3/21/2016	4/11/2016	16-03102	Uranium-235	EML U-02 Modified	5.13E-01	1.94E-01	1.97E-01	9.54E-02	1.14E-02	pCi/g
16-03102-02	MBL	BLANK	03/22/16 00:00	3/21/2016	4/11/2016	16-03102	Uranium-235	EML U-02 Modified	3.54E-02	6.03E-02	6.03E-02	1.06E-01	2.21E-03	pCi/g
16-03102-03	DUP	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/11/2016	16-03102	Uranium-235	EML U-02 Modified	1.27E-01	1.11E-01	1.11E-01	1.27E-01	2.65E-03	pCi/g
16-03102-04	DO	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/11/2016	16-03102	Uranium-235	EML U-02 Modified	9.53E-02	8.75E-02	8.78E-02	1.01E-01	1.21E-02	pCi/g
16-03102-05	TRG	SEDIMENT 2016-03-16B	03/16/16 13:55	3/21/2016	4/11/2016	16-03102	Uranium-235	EML U-02 Modified	1.14E-01	9.53E-02	9.56E-02	8.18E-02	5.14E-03	pCi/g
16-03102-06	TRG	SEDIMENT 2016-03-16B DUP	03/16/16 13:55	3/21/2016	4/11/2016	16-03102	Uranium-235	EML U-02 Modified	1.55E-01	1.20E-01	1.21E-01	1.20E-01	1.43E-02	pCi/g
16-03102-01	LCS	KNOWN	03/22/16 00:00	3/21/2016	4/11/2016	16-03102	Uranium-238	EML U-02 Modified	7.08E+00	2.55E-01				pCi/g
16-03102-01	LCS	SPIKE	03/22/16 00:00	3/21/2016	4/11/2016	16-03102	Uranium-238	EML U-02 Modified	6.17E+00	8.95E-01	9.98E-01	7.70E-02	1.50E-02	pCi/g
16-03102-01	MBL	BLANK	03/22/16 00:00	3/21/2016	4/11/2016	16-03102	Uranium-238	EML U-02 Modified	6.66E-02	6.35E-02	6.37E-02	6.84E-02	1.09E-02	pCi/g
16-03102-03	DUP	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/11/2016	16-03102	Uranium-238	EML U-02 Modified	9.04E-01	2.71E-01	2.79E-01	1.13E-01	2.76E-02	pCi/g
16-03102-04	DO	SEDIMENT 2016-03-16A	03/16/16 13:35	3/21/2016	4/11/2016	16-03102	Uranium-238	EML U-02 Modified	1.11E+00	2.79E-01	2.90E-01	6.03E-02	8.56E-03	pCi/g
16-03102-05	TRG	SEDIMENT 2016-03-16B	03/16/16 13:55	3/21/2016	4/11/2016	16-03102	Uranium-238	EML U-02 Modified	9.96E-01	2.75E-01	2.84E-01	9.48E-02	6,65E-03	pCi/g
16-03102-06	TRG	SEDIMENT 2016-03-16B DUP	03/16/16 13:55	3/21/2016	4/11/2016	16-03102	Uranium-238	EML U-02 Modified	6.80E-01	2.29E-01	2.34E-01	8.19E-02	1.30E-02	pCi/g

CU=Counting Uncertainty; CSU=Combined Standard Uncertainty (2-sigma); MDA=Minimal Detected Activity; LCS=Laboratory Control Sample; MBL=Blank; DUP=Duplicate; TRG=Normal Sample; DO=Duplicate Original; CV=Critical Value

SECTION V ANALYTICAL STANDARDS

QA/QC REVIEWED

CERTIFICATE OF CALIBRATION ALPHA STANDARD SOLUTION

Radionuclide:

U-238NAT

Customer:

TMA EBERLINE

Half Life:

 $(4.468 \pm 0.005) \times 10^{9}$ years

P.O.No.:

OR2778

Catalog No.:

7338

Reference Date: January 1 1995

12:00 PST.

Source No.:

479-50

Contained Radioactivity: (Total U) 8.016 µCi

Contained Radioactivity: (Total U) 297 kBq

Description of Solution

a. Mass of solution:

65,2896 g in a 50 ml flame sealed ampoule

b. Chemical form:

Uranyl Nitrate in H2O

c. Carrier content:

None

d. Density:

Approximately 1.3202

g/ml @ 20°C.

Radioimpurities

Refer to attached technical data sheet

Radioactive Daughters

Refer to attached technical data sheet

Radionuclide Concentration

(Total U) 0.1228

μCi/g.

Method of Calibration

Activity calculations are based upon known specific activity and mass.

Uncertainty of Measurement

a. Systematic uncertainty in instrument calibration:

+3.0%

b. Random uncertainty in assay:

+0.0%

c. Random uncertainty in weighing(s):

+2.0%

d. Total uncertainty at the 99% confidence level:

 $\pm 3.6\%$

NIST Traceability

This calibration is implicitly traceable to the National Institute of Standards and Technology.

Leak Test(s)

See reverse side for Leak Test(s) applied to this source.

Notes

- 1. Nuclear data were taken from "Table of Radioactive Isotopes", edited by Virginia S. Shirley, 1986.
- 2. IPL participates in an NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (As in NRC Regulatory Guide 4.15).

29 DECEMBER Date Signed

ISOTOPE PRODUCTS LABORATORIES

3017 N. San Fernando Blvd. Burbank, California 91504

818 • 843 • 7000 FAX 818 • 843 • 6168

QUALITY CONTROL PROGRAM

Rev.8; 11/01/03 Title: Radioactive Reference Standards Solutions & Records

EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE SOLUTIONS PRIMARY DILUTION RECERTIFICATION

·	MP 009	
SOLUTION REFERENCE # IPLA		ENT DATE 10/1/2015 0:00 DLUTION # U-8
Principal Radionuclide Half L	Life, Years 468E+09	Half Life, Days 1.632E+12
Radionuclide ^{224, 235, 238} ⊍ Certified Activity 8,016E+00 μCi Certified Concentration μCi p	Refe er gram	rence Date 1/1//1995 0:00
	Ampoule 32.5020 Weig ution Net 65.1380 Weig	ht, Grams
Chemical Composition of Stand Uranyl nitrate in dilute HNO ₃	dard Solution	
Dilution Instructions:	Dilution Solvent Us	ed 1M HNO₃
Dilute to a volume of	000.00 milliliters	
Certified Total Activity of 8.0160 μCi And after dilution the activity of this s	Which Equals colution is 1.77955E+04 dpm	1.780E+07 dpm at the date listed above This activity concentration is based on the original imference date listed above. All activities are corrected to the date and time of analysis by the laboratory data processing software.
·	Expi	ration Date: July 27, 2016
Verified & Approved By QC Approval	James James	Date: 10/1/2015 0:00 Date: 10/1/2015 0:00

QUALITY CONTROL PROGRAM MP-009

Rev.8; 11/01/03 Title: Radioactive Reference Standards Solutions & Records

EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE STANDARD SOLUTIONS SECONDARY DILUTION RECERTIFICATION

SECONDARY	DILOTION RECEIVED TO ATTOM	
Solution Reference # IRE4		Date
Principal Radionuclide Half L	.ife, Years 68E¥09	Half Life, Days
Radionuclide of Interest 234, 235, 238 U Parent Solution Conc. 1,77,96E+04 dpm/		Date 1/1/1995 0:00
Chemical Composition of Standar Uraniy Nitrate in 1M HNO ₃	rd Solution	
Dilution Instructions:	Dilution Solvent Used	1M HNO₃
SECONDAR	VOLUMETRIC DILUTION	
Vol. Parent Solution: 4.0000 ml Total Activity: 7.1182E+04 dpm Final Volume: 1000.00 ml	Final Activity Concentra	ation: 7/1182E+01 dpm/ml
NOTES:	reference date listed a	ation is based on the original bove. All activities are and time of analysis by the ssing software.
Isotopic Distribution as: U-238 Atom % = 48.239	= 1.602 dpm/ml	Date: July 27, 2016
Verified & Approved By		Date: 10/1/2015 0:00
QC Approval		Date:

RECORD COPY

Tracer Solution for Environmental Analysis & Disequilibrium Studies

Product Description & Measurement Certificate

Description

Principal radionuclide:

uranium 232 (U-232)

Product code: UDP10050

Daughter Nuclide:

Th-228

Batch Number: 92/232/67

Measurement

Reference date:

Radioactive concentration U-232

01 March 2000

which is equivalent to

6.739E+03 becquerels per gram of solution 1.821E-01 microcuries per gram of solution

Mass of solution

5.35£ granus

Volume of solution Total activity of U-232 5.035 millilitres 3.61E+04 becquerels

which is equivalent to

9.76E-01 microcuries

Method of measurement (see reverse of this certificate)

Accuracy

Random uncertainty is: $\pm 0.7\%$

Systematic uncertainty: ± 0.5%

Overall uncertainty in the radioactive concentration quoted above: $\pm 1.7\%$

Overall uncertainty is defined on the reverse of this certificate.

Radionuclidic Purity

Any radioactive impurities measured are listed below, expressed as percentages

of the activity of the principle radionuclide at the reference date.

Th-228 and daughter activity removed 2 Feb 2000

U-232 daughters activity will increase with time. By alpha 88% U-232, 12% daughters on 1/3/00

Isotopic

The isotopic composition, expressed as atom per cent at the reference date

Purity

Not measured

Chemical Composition Calculated weight of U-232, 4.42E-08 grams, as 2M HNO3 solution in a flame sealed glass vial.

This Tracer solution has been produced 'carrier free'.

Physical

Recommended half life of uranium 232: 6.980E+01 years

Data

Principle energies of alpha emissions (MeV): 5.263 31.7%, 5.320 68.0%

Branching ratio for alpha emission: 100%

Calculated specific activity of uranium 232: 8.167E+05 Bq per microgram U-232.

Remarks

For safety information and notes to ensure correct usage by all persons handling this radioactive Tracer

solution please read the instructions accompanying the package.

AEA Technology operates a quality management system which has been independently audited and

approved to ISO 9001.

Approved Signatory

Project Ref. AE2315

Roger Wiltshire

Prepared and characterised in the UK, for world wide distribution by Isotrak, AEA Technology, QSA.

QUALITY CONTROL PROGRAM

MP-009

Rev.8; 11/01/03 Title: Radioactive Reference Standards Solutions & Records

EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE SOLUTIONS PRIMARY DILUTION RECERTIFICATION MP 009

		HI. 000	
SOLUTION RE	FERENCE # AEA/Amersham 92/	CURRENT D	
Principal Radionuclide	Half Life, Years 7.200E±01		Half Life, Days 2.630E+04
Radionuclide Certified Activity Certified Concentration	²³² U 99760E-01 μCi μCi per gram	Reference	Date 3/1/2000 0:00
	Ampoule /Solution Gross Empty Ampoule Solution Net	Weight, Gr Weight, Gr Weight, Gr 0.9760 µCi	ams
Chemical Con	position of Standard Solution	n	
²³² U(NO ₃) ₆ in 2			•
Q(1403)6 41 2	WELTINO3		
Dilution Instructions: Dilute to	Dia volume of 1000:00 m	lution Solvent Used	2M HNO₃
Certified Total Activity of	0.9760 μ Cl Whic h	Equals 2.167	E+06 dpm at the date listed above
And after dilution the	activity of this solution is 2	167E+03 dpm/ml re	his activity concentration is based on the original eference date listed above. All activities are corrected the date and time of analysis by the laboratory data rocessing software.
. •		Expiration	Date: October 26, 2016
Verified & Approved By QC Approval	Note of the state		Date: 10/27/2015 0:00 Date: 10/28/15
401 ppiovai_	TOUT TOUT		

QUALITY CONTROL PROGRAM MP-009

Rev.8; 11/01/03 Title: Radioactive Reference Standards Solutions & Records

EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE STANDARD SOLUTIONS

SECO	ONDARY DILUTION RECERT	TIFICATION	
	MP-009	Date	
Solution Reference	e # AEA/Amersham 92/232/67	Solution #	
Principal Radionuclide	Half Life, Years		Half Life, Days
²³² Ü∴	7:200E+01		2.630E+04
			•
Radionuclide of Interest		Reference Date	3/1/2000 0:00
Parent Solution Conc. 2.167E+0	3: apm/mi		
Chemical Composition o	f Standard Solution		
Chemical Composition of 22/U(NO ₃) ₆ in 2M HNO ₃	i otalidale ociucion		•
COUNCES IN ZIVERINGS	FELLENDER STEINE EL STROLLEN, DE REGERT A	<u>a</u>	
7.1 (V L	Dilution S	olvent Used	2M HNO ₃
Dilution Instructions:	Dittal		The Contract of American Contract of Contr
SE	CONDARY VOLUMETRIC DIE	LUTION	
Vol. Parent Solution: 10.0	000 ml		
Total Activity: 2.1670E	+04 dpm Final Ad	tivity Concentration	n: 2.1670E+01 dpm/ml
Final Volume: 1000		· · · · · · · · · · · · · · · · · · ·	
Final vosume.		47 74	a in based on the priminal
	This a	ctivity concentratio	n is based on the original /e. All activities are
NOTES:	referei	ice date listed aboved to the date and	time of analysis by the
INO 1 ES:	correc	tory data processin	ng software.
	μροια		•
]			
1			
		Expiration Dat	e: October 26, 2016
1			
	1		
,			
	mel		40/07/0045 0:00
Verified & Approved By		Dai	te: 10/27/2015 0:00
	1,0011,5		in whale
QC Approval	alle to the	Da	10
I	• •		

QA/QC REVIEWED ERTIFICATE OF CALIBRATION OF CALIBRA

Radionuclide

Th-230

Customer:

OCT 1 4 1/100 LO

Half Life:

 $(7.54 \pm 0.03) \times 10^4 \text{ years}$

P.O.No.:

TT4944

Catalog No.:

7230

Reference Date: November 1 1991

*77*1

12:00 PST.

Source No.:

388-116

Contained Radioactivity:

1.036

μCì.

Description of Solution

a. Mass of solution:

5.0042

Th(NO3)4 in 0.1N HNO3

b. Chemical form:c. Carrier content:

None added

grams.

d. Density:

1.0016

gram/ml @ 20°C.

Radioimpurities

See attached technical data sheet

Radioactive Daughters

See attached technical data sheet

Radionuclide Concentration

0.207

μCi/gram.

Method of Calibration

Weighed aliquots of the solution were assayed using a liquid scintillation counter.

Uncertainty of Measurement

a. Systematic uncertainty in instrument calibration:

±2.0%

b. Random uncertainty in assay:

±0.5%

c. Random uncertainty in weighing(s):

±0.2%

d. Total uncertainty at the 99% confidence level:

-+2.7%

NIST Traceability

This calibration is implicitly traceable to the National Institute of Standards and Technology.

Notes

- 1. Nuclear data were taken from "Table of Isotopes", Seventh Edition, edited by Virginia S. Shirley.
- 2. IPL participates in an NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay(and later NIST certification) of Standard Reference Materials. (As in NRC Regulatory Guide 4.15)

QUALITY CONTROL

ISOTOPE PRODUCTS LABORATORIES

1800 No. Keystone Street.,

Burbank, California 91504 (818) 843 - 7000

QUALITY CONTROL PROGRAM MP-009

Rev.14; 10/10/2012 Title: Radioactive Reference Standards Solutions & Records

EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE SOLUTIONS PRIMARY DILUTION RECERTIFICATION

	MP 009
	CURRENT DATE 3/5/2016.0:00
SOLUTION REFERENCE # IPL 388-116	SOLUTION # Th-1
Principal Radionuclide Half Life, Years	Half Life, Days
²³⁰ Th 7:540E+04	2.754E+07
Radionuclide 20 horium	Reference Date 11/1/1991 0:00
Certified Activity 1036E+00 μCi	
Certified Concentration μCi per gram	
Ampoule /Solution Gross	9:2660 Weight, Grams
Empty Ampoule	4.6218 Weight, Grams
Solution Net Total Activity in Ampoule	4.6442 Weight, Grams 1.0360 μCi
Total Activity III Allipodie	∞ as orion t hαι
Chemical Composition of Standard Soluti	on
²³⁰ Th(NØ ₅₎₄ in 0.1N HNØ₃	
·	
Dilution Instructions:	bilution Solvent Used 0.1N HN0 ₃
Dilute to a volume of 1000.00 n	nillilltore
Dilute to a volume of	multer 2
Certified Total Activity of 1.0360 μCi Whic	h Equals 2.300E+06 dpm at the date listed above
And after dilution the activity of this solution is	This activity concentration is based on the original reference date listed above. All activities are corrected
	to the date and time of analysis by the laboratory data processing software.
·	
,	Expiration Date: February 8, 2017
	٨
1	V
Recertified By	Date: 3/5/2016 0:00
QC Approval	Date:3/10/16

QUALITY CONTROL PROGRAM MP-009

Rev.14; 10/10/2012

Title: Kadioactive Reference Standards	Title: Radioactive Reference Standards Solutions & Records			
EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE STANDARD SOLUTIONS SECONDARY DILUTION RECERTIFICATION				
Solution Reference #	MP-009 IPL 388-116	Date Solution #	3/5/2016 0:00 Th-1b	
Principal Radionuclide 230Th	Half Life, Years 7.540E+04		Half Life, Days 2.754E+07	
Radionuclide of Interest 230 Thonum Parent Solution Conc. 2.30E+03	dpm/ml	Reference Date	11/1/1991 0:00	
Chemical Composition of Standard Solution 230 Th(NO ₃) ₄ in 0.1N HNO ₃				
Dilution Instructions:	Dilution So	olvent Used	0.1N HNO ₃	
SECON	IDARY VOLUMETRIC DIL	UTION		
Vol. Parent Solution: 10.0000 Total Activity: 2.2999E+04 Final Volume: 1000.00	dpm Final Acti	vity Concentration:	2.2999E+01 dpm/ml	
NOTES:	This activity concentration is based on the original reference date listed above. All activities are corrected to the date and time of analysis by the laboratory data processing software.			
		Expiration Date:	February 8, 2017	
Recertified By		<u>Date:</u>	3/5/2016 0:00	
QC Approval	Bust	Date:	3/10/16	

CERTIFICATE OF CALIBRATION ALPHA STANDARD SOLUTION

Radionuclide:

Th-232

Customer:

TMA EBERLINE

Half Life:

 (1.405 ± 0.006) x 10^10 years

P.O.No.;

(Th-232)

Catalog No.:

7232

Reference Date:

VH1632 November 1 1993

Contained Radioactivity:

(Th-232) 0.0933

12:00 PST.

Source No.:

435-104-2

Contained Radioactivity:

kBa.

Description of Solution

a. Mass of solution:

11.9712 g (in a 10 ml flame sealed ampoule)

Th(NO3)4 in water

b. Chemical form: c. Carrier content:

None added

g/ml @ 20°C.

3.45

d. Density: Radioimpurities Approx. 1.21 None detected (other than daughters).

Radioactive Daughters

Ra-228, Ac-228, Th-228, Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Po-212, Tl-208

Radionuclide Concentration

(Th-232) 0.00779

μCi/g.

Method of Calibration

Activity calculations are based upon known specific activity and mass.

Uncertainty of Measurement

a. Systematic uncertainty in instrument calibration:

+3.0%

b. Random uncertainty in assay:

+0.0%

c. Random uncertainty in weighing(s):

±2.0%

d. Total uncertainty at the 99% confidence level:

 $\pm 3.6\%$

NIST Traceability

This calibration is implicitly traceable to the National Institute of Standards and Technology.

Leak Test(s)

See reverse side for Leak Test(s) applied to this source.

1. Nuclear data were taken from "Table of Radioactive Isotopes", edited by Virginia S. Shirley, 1986.

2. IPL participates in an NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (As in NRC Regulatory Guide 4.15).

QUALITY CONTROL

Date Signed

ISOTOPE PRODUCTS LABORATORIES

1800 North Keystone Street Burbank, California 91504

(818) 843 - 7000

QUALITY CONTROL PROGRAM

. Since the product of the distribution of the constant of the $k \in \mathbb{N}^n$, which is a k

Rev.8; 1/10/03 Title: Radioactive Reference Standards Solutions & Records

EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE SOLUTIONS PRIMARY DILUTION RECERTIFICATION MP 009

III. 666
CURRENT DATE 9/29/2015 0:00 SOLUTION REFERENCE # IPL 435-104-2 SOLUTION # Th-8
Principal Radionuclide Half Life, Years Half Life, Days 232Th, 228Th 5.132E+12
Radionuclide 232 & 228 Th Reference Date 11/1/1993 0:00 Certified Activity 9.330Ε-02 μCi Certified Concentration μCi per gram
Ampoule /Solution Gross Empty Ampoule 6.9296 Weight, Grams Solution Net 11.9119 Weight, Grams Total Activity in Ampoule 0.0933 µCi
Chemical Composition of Standard Solution Th(NO ₃) ₄ in H2O
Dilution Instructions: Dilution Solvent Used 1% Nitric Acid
Dilute to a volume of 1000 00 milliliters
Certified Total Activity of 0.0933 µCi Which Equals 2.071E+05 dpm at the date listed above
And after dilution the activity of this solution is 2.071E+02 dpm/ml This activity concentration is based on the original reference date listed above. All activities are corrected to the date and time of analysis by the laboratory data processing software.
Expiration Date: August 25, 2016
Verified & Approved By Date:

QUALITY CONTROL PROGRAM MP-009

Control of the Contro

Rev.8; 1/10/03 Title: Radioactive Reference Standards Solutions & Records

EBERLINE SERVICES - OAK RIDGE LABORATORY

RADIOACTIVE REFERENCE STANDARD SOLUTIONS SECONDARY DILUTION RECERTIFICATION			
SECUIADA	THE PIECERON NECENTRICATION		
,		Date 9/29/2015 0:00	
Solution Reference # IF			
Principal Radionuclide H	laif Life, Years	Half Life, Days	
228 & 252 Th	1.405E+10	****** * *5.132E+*12	
Radionuclide of Interest Parent Solution Conc. 2.07E+02 d	Reference I pm/ml	Date 11/1/1993 0:00	
Chemical Composition of Sta Th(NO ₃) ₄ in 1% HNO ₃	ndard Solution		
Dilution Instructions:	Dilution Solvent Used	1% Nitric Acid	
SECOND	SECONDARY VOLUMETRIC DILUTION		
020011	,		
Vol. Parent Solution: 500.0000 n Total Activity: 1.0355E+05 d Final Volume: 1000.00 n	lpm Final Activity Concentrat	tion: 1.0355E+02 dpm/ml	
•	This activity concentra	tion is based on the original	
NOTES:	reference date listed at corrected to the date a laboratory data proces	nd time of analysis by the	
	Expiration D	Date: August 25, 2016	
,		i	
Verified & Approved By		Date: 9/29/2015 0:00	

24937 Avenue Tibbitts Valencia, California 91355

Tel 661 • 309 • 1010

An Eckert & Ziegler Company

Fax 661.257.8303

CERTIFICATE OF CALIBRATION ALPHA STANDARD SOLUTION

Radionuclide:

Half-life:

Th-229

7340 ± 160 years

7229

Catalog No.: 867-54 Source No.:

Customer:

(Th-229 only)

EBERLINE SERVICES

P.O. No.: 00009633

Reference Date:

15-Jan-02 12:00 PST 37.48

Contained Radioactivity: 1.013

μCi

kBq

Physical Description:

A. Mass of solution:

5.0147 g in 5 mL flame-sealed ampoule

B. Chemical form:

Th(NO₃)₄ in 0.1M HNO₃

C. Carrier content:

10μg Th/mL

D. Density:

1.0016 g/mL @ 20°C.

Radioimpurities:

None detected (daughters in equilibrium)

Radionuclide Concentration:

0.2020

µCi/g,

7.474

kBq/g

Method of Calibration:

This source was prepared from a weighed aliquot of solution whose activity in µCi/g was determined using gamma ray spectrometry.

Peak energy used for integration:

193.5 keV

Branching ratio used:

0.0441 gammas per decay

Uncertainty of Measurement:

± 0.7 % A. Type A (random) uncertainty: ± 3.0 % B. Type B (systematic) uncertainty: C. Uncertainty in aliquot weighing: ± 0.0 %

D. Total uncertainty at the 99% confidence level:

± 3.1 %

Notes:

- See reverse side for leak test(s) performed on this source.

- IPL participates in a NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (As in NRC Regulatory Guide 4.15).
- Nuclear data was taken from IAEA Technical Report Series No. 261.
- This solution has a working life of 5 years.

Quality Control

IPL Ref. No.:

867-54

- ISO 9001 CERTIFIED -

QUALITY CONTROL PROGRAM MP-009

Rev.8; 1/10/03 Title: Radioactive Reference Standards Solutions & Records

EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE SOLUTIONS PRIMARY DILUTION RECERTIFICATION MP 009

	••••	
	CURRENT DATE 9/29/2015 0:00	
SOLUTION REFERENCE # IPL 867-54	SOLUTION # Th-18	
Principal Radionuclide Half Life, Y	ears Half Life, Days	
²²⁹ Th 7.340E-		
Radionuclide 29th	Reference Date 1/15/2002 0:00	
Certified Activity 1013E+00 μCi	Marie de servicio de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de	
Certified Concentration μCi per gra	am:	
- Anima Animana and Salas and Salas Bar G.		
Ampoule /Solution Gro	oss 8.7752 Weight, Grams	
Empty Ampo	ule 37591 Weight, Grams	
Solution		
Total Activity in Ampo		
Chemical Composition of Standard S	Solution	
²²⁹ Th(NO ₃) ₄ in 0.1M HNO ₃		
Emery And State Control of the State Control of the		
Dilution Instructions:	Dilution Solvent Used 0.1 M HNO ₃	
		
Dilute to a volume of 1000.00	milliliters	
	· ·	
· 		
Certified Total Activity of 1.0130 μCi	Which Equals 2:249E+06 dpm at the date listed above	
 	This activity concentration is based on the original	
And after dilution the activity of this solution is 2,249E+03 dpm/ml reference date listed above. All activities are corrected		
	to the date and time of analysis by the laboratory data processing software.	
	, b) adecounted accounted	
	Expiration Date: August 24, 2016	
	\wedge	
1		
	Date: 9/29/2015 0:00	
Verified & Approved By	Date. 3/20/20 (3 0.00	
	Date: 9/30/15	
QC Approval	Date.	

QUALITY CONTROL PROGRAM MP-009

Rev.7; 9/29/99 Title: Radioactive Reference Standards Solutions & Records

EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE STANDARD SOLUTIONS

SECONDARY DILUTION RECERTIFICATION		
MF Solution Reference # IPL 867	P-009 ∖54 Solu	Date 9/29/2015 0:00 tion #
<u></u>	e, Years 0E+03	Half Life, Days 2.681E+06
Radionuclide of Interest 228Th Parent Solution Conc. 2.25E+03 dpm/m		e Date 1/15/2002 0:00
Chemical Composition of Standard TH(NO₃)₄ in 0 1M HNO₃	Solution	
Dilution Instructions:	Dilution Solvent Used	O IM HNOS
SECONDARY VOLUMETRIC DILUTION		
Vol. Parent Solution: 10.0000 ml Total Activity: 2.2490E+04 dpm Final Volume: 1000.00 ml	Final Activity Concent	ration: 2.2490E+01 dpm/ml
NOTES:	reference date listed	tration is based on the original I above. All activities are e and time of analysis by the essing software.
	Expiration	n Date: August 24, 2016
Verified & Approved By QC Approval	surf -	Date: 9/29/2015 0:00 Date: 9/30/15

Analytics

1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 Tel 404-352-8677 Fax 404-352-2837 www.analyticsinc.com

CERTIFICATE OF CALIBRATION

Standard Radionuclide Source

GAS-1402

98503

Sand in 16 Ounce PP Taral Jar Filled to Capacity

Customer:

Reference Date:

Eberline Analytical Corporation

OR-1405030, Item 6 P.O. No.: 01-Oct-2014 Product Code: 8401-EG-SAN

12:00 PM EST Grams of Master Source:

0.017608

This standard radionuclide source was prepared using aliquots measured gravimetrically from master radionuclide solutions. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using a germanium gamma spectrometer system. At the time of calibration no interfering gammaray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST." EZA is accredited by the Health Physics Society (HPS) for the production of NIST-traceable sources, and this source was produced in accordance with the HPS accreditation requirements. Customers may report any concerns with the accreditation program to the HPS Secretariat, 1313 Dolley Madison Blvd., Ste. 402, McLean, VA 22101.

			Master		Unce	rtainty	*,%	
	Gamma-Ray	Half-Life,	Source*	This Source	Ty	pe		Calibration
Nuclide	Energy (keV)	Days	γps/gram	γps	u _A	u_B	U	Method*
Am-241	59.5	1.580E+05		2.030E+03	0,1	1.8	3.6	4π LS
Cd-109	88.0	4.614E+02	1.663E+05	2,929E+03	0.5	2.0	4.1	HPGe
Co-57	122.1	2.717E+02	8.913E+04	1.569E+03	0.4	1.7	3.5	HPGe
Ce-139	165.9	1.376E+02	1.241E+05	2.185E+03	0.4	1.7	3.5	HPGe
Hg-203	279.2	4.659E+01	2.675E+05	4.710E+03	0.3	1.7	3.5	HPGe
ng-200 Sn-113	391.7	1.151E+02	1.796E+05	3.163E+03	0.4	1.9	3.9	HPGe
Cs-137	661.7	1.099E+04	1.111E+05	1.956E+03	0.7	1.9	4.0	HPGe
	898.0	1.066E+02	4.223E+05	7.435E+03	0.7	1.7	3.7	HPGe
¥-88		1.925E+03	2.091E+05	3.683E+03	0.7	1.8	3.9	HPGe
Co-60	1173.2		2.091E+05	3.687E+03	0.7	1.8	3.9	HPGe
Co-60	1332.5	1.925E+03		7.872E+03	0.7	1.7	3.7	HPGe
Y-88	1836.1	1.066E+02	4.471E+05	1.0125703	0.1	1.1	0.1	111 00

^{*} Master Source refers to Analytics' 8-isotope mixture which is calibrated quarterly.

Calibration Methods: 4n LS - 4 pi Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC -Ionization Chamber. Uncertainty: U - Relative expanded uncertainty, k=2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results."

(Certificate continued on reverse side)

MGS Certificate Rev 7, 11 September 2014

Laboratory

Page 1 of 2

SECTION VI QUALITY CONTROL SAMPLE RESULTS SUMMARY

Printed: 4/11/2016 2:53 PM

Analysis Control Cha	ırt											Pag	ge 1 of 2
WO		Analysis		Run	Activit	y Units	Aliquo	t Units			Client Name		
16-03102		UUISO		1	p(Ci	g)		Auxier 8	& Associ	ates, Inc	•
				Labo	ratory (Control	Sample				1	1	
Analyte		LCS Measured	CSU Measured	LCS Expected	Uncert. Expected	Known	Known Error	Result	csu	Standard ID	Standard ACT (dpm)	Standard Error	Standard Added (g
U-234		85.77%	16.14%	100.00%	3.60%	7.31E+00	2.63E-01	6.27E+00	1.01E+00	U-8a	3.20E+01	3.60E+00	5.07E-0
U-238		87.23%	16.17%	100.00%	3.60%	7.08E+00	2.55E-01	6.17E+00	9.98E-01	U-8a	3.10E+01	3.60E+00	5.07E-0
						. 0 :							
w-w-	·	1	·	1	Matri	x Spike	! 		<u> </u>		ŀ		T
Analyte	Normalized Difference	MS Actual % Rec	Expected MS Result	Expected MS Uncert	Actual MS Result	Actual MS CSU	Sample Result	Sample CSU	Sample Aliquot	Standard ID	Standard ACT (dpm)	Standard Error %	Standard Added (g
	Rep	olicate S	ample						QC	Summ	ary		
Analyte	Normalized Difference	RPD	Original Result	Original CSU	Replicate Result	Replicate CSU	LCS Relative Bias	LCS % R		MS % R	MS ND	Rep RPD	Rep Ni
U-234	1.03	20.85	9.48E-01	2.64E-01	1.17E+00	3.26E-01	0.86	ок				ок	ок
U-238	1.01	20.51	1.11E+00	2.90E-01	9.04E-01	2.79E-01	0.87	ок				ок	ок
U-235	0.44	28.74	9.53E-02	8.78E-02	1.27E-01	1.11E-01		ок				NA	ок

Printed: 4/11/2016 2:53 PM Page 2 of 2

wo	Analysis	Run	Activity Units	Aliquot Units	Client Name
16-03102	UUISO	1	pCi	g	Auxier & Associates, Inc.

Printed: 4/11/2016 8:03 AM Page 1 of 2

16-03102 ThISO 1 pCi g Auxier & Associates, Inc.	WO	Analysis	Run	Activity Units	Aliquot Units	Client Name
	16-03102	ThISO	1	pCi	g	Auxier & Associates, Inc.

			Labo	ratory (Control .	Sample			,			
Analyte	LCS Measured	CSU Measured	LCS Expected	Uncert. Expected	Known	Known Error	Result	csu	Standard ID	Standard ACT (dpm)	Standard Error	Standard Added (g)
TH-228	111.25%	17.78%	100.00%	3.60%	4.79E+00	1.72E-01	5.32E+00	9.47E-01	Th-8b	1.04E+02	3.60E+00	1.03E-01
TH-230	114.86%	19.19%	100.00%	2.70%	5.34E+00	1.44E-01	6.13E+00	1.18E+00	Th-1b	2.35E+01	2.70E+00	5.04E-01
TH-232	99.90%	17.75%	100.00%	3.60%	4.79E+00	1.72E-01	4.78E+00	8.49E-01	Th-8b	1.04E+02	3.60E+00	1.03E-01

						Matri	x Spike						ş.	
	Analyte	Normalized Difference	MS Actual % Rec	Expected MS Result	Expected MS Uncert	Actual MS Result	Actual MS CSU	Sample Result	Sample CSU	Sample Aliquot	Standard ID	Standard ACT (dpm)	Standard Error %	Standard Added (g)
L-2	· · · · · ·		•••											
	····													
ı														

	Rep	ample	QC Summary									
Analyte	Normalized Difference	RPD	Original Result	Original CSU	Replicate Result	Replicate CSU	LCS Relative Bias	LCS % R	MS % R	MS ND	Rep RPD	Rep ND
TH-228	1.90	44.32	6.77E-01	2.20E-01	1.06E+00	3.30E-01	1.11	ок			NA	ок
TH-230	1.12	17.90	6.98E+00	1.49E+00	8.36E+00	1.89E+00	1.15	ок			ок	ок
TH-232	1.28	28.08	8.19E-01	2.44E-01	1.09E+00	3.29E-01	1.00	ок			INV	ок

Printed: 4/11/2016 8:03 AM Page 2 of 2

WO	Analysis	Run	Activity Units	Aliquot Units	Client Name
16-03102	ThISO	1	pCi	g	Auxier & Associates, Inc.

No Matrix Spike

Printed: 4/13/2016 2:32 PM Page 1 of 2

Alialysis Collifor Chare					
wo	Analysis	Run	Activity Units	Aliquot Units	Client Name
16-03102	Gamma	1	pCi	g	Auxier & Associates, Inc.

			Labo	ratory (Control	Sample						
Analyte	LCS Measured	CSU Measured	LCS Expected	Uncert. Expected	Known	Known Error	Result	csu	Standard ID	Standard ACT (dpm)	Standard Error	Standard Added (g)
CO-60	100.71%	7.63%	100.00%	4.00%	1.37E+02	5.48E+00	1.38E+02	1.05E+01	GAS-1302	1.37E+02	5.48E+00	7.36E+02
CS-137	102.15%	9.66%	100.00%	4.00%	8.69E+01	3.48E+00	8.88E+01	8.58E+00	GAS-1302	8.69E+01	3.48E+00	7.36E+02

			- · · · · · · · · · · · · · · · · · · ·		Matri	x Spike							,
Analyte	Normalized Difference	MS Actual % Rec	Expected MS Result	Expected MS Uncert	Actual MS Result	Actual MS CSU	Sample Result	Sample CSU	Sample Aliquot	Standard ID	Standard ACT (dpm)	Standard Error %	Standard Added (g)
							,					i	!
		· · · · · · · · · · · · · · · · · · ·	<u> </u>										

	Rep	Sample	QC Summary									
Analyte	Normalized Difference	RPD	Original Result	Original CSU	Replicate Result	Replicate CSU	LCS Relative Bias	LCS % R	MS % R	MS ND	Rep RPD	Rep ND
BI-214	0.88	8.92	1.70E+00	2.45E-01	1.86E+00	2.53E-01	1.01	ок	<cs-137< td=""><td>BI-214></td><td>ок</td><td></td></cs-137<>	BI-214>	ок	
K-40	0.59	6.37	1.59E+01	2.36E+00	1.69E+01	2.55E+00	1.02	ок	<co-60< td=""><td>K-40></td><td>ок</td><td>ок</td></co-60<>	K-40>	ок	ок
PB-214	0.27	2.77	1.86E+00	2.60E-01	1.81E+00	2.58E-01				PB-214>	ок	ок

Printed: 4/13/2016 2:32 PM

Page 2 of 2

WO	Analysis	Run	Activity Units	Aliquot Units	Client Name
16-03102	Gamma	1	pCi	g	Auxier & Associates, Inc.

SECTION VII

LABORATORY TECHNICIAN'S NOTES & RUN LOGS

ISO U NOTES

Oak Ridge Laboratory

601 Scarboro Rd. Oak Ridge, TN 37830 Voice: 865.481.0683 www.eberlineservices.com

Internal Work Order	16-03102
Analysis Code	UUISO
Run Number	1

#	Date	Dept	User	Notes
1	04/05/16 11:27	PREP	JWOLFE	ALIQUOTED AND ADDED SPIKES AND TRACERS- ADDED HF AND DRIED SAMPLES DOWN- ADDED MIXED ACIDS AND TOOK SAMPLES TO DRYNESS- SUBMITTED SAMPLES TO SEPARATIONS

JNOIPE 4/5/14

Oak Ridge Laboratory

601 Scarboro Rd. Oak Ridge, TN 37830 Voice: 865.481.0683 www.eberlineservices.com

Internal Work Order	16-03102
Analysis Code	UUISO
Run Number	1

#	Date	Dept	User	Notes
1	04/05/16 11:27	PREP	JWOLFE	ALIQUOTED AND ADDED SPIKES AND TRACERS- ADDED HF AND DRIED SAMPLES DOWN- ADDED MIXED ACIDS AND TOOK SAMPLES TO DRYNESS- SUBMITTED SAMPLES TO SEPARATIONS
2	04/08/16 17:12	CHEM	JDEMELAS	Added concentrated HCl to sample beakers and heated to dryness; Added 20 mi 8N HCL to samples and transferred to new, labeled C-Tubes, rinsing with 8N HCl to bring volume to ~35 ml; Preconditioned resin columns with 35 ml 8N HCl; Centrifuged samples and loaded onto columns; Rinsed C-Tubes with 20 ml 8N HCl, centrifuged as needed and loaded onto columns; Rinsed columns with 35 ml 8N HCl = 0.1N NH4I, 35 ml of 6.5N HCl = 0.04N HF, and 10 ml of 6.5N HCl; Eluted Uranium with 50 ml of 0.5N HCl into clean, labeled 100 ml beakers; Dried-down samples on hotplate; Dissolved samples in ~10 ml of concentrated HCl; Transferred to new, labeled C-Tubes with DI H2O. Set samples aside for later precipitation and filtering.

Oak Ridge Laboratory 601 Scarboro Rd. Oak Ridge, TN 37830 Voice: 865.481.0683 www.eberlineservices.com

Internal Work Order	16-03102
Analysis Code	UUISO
Run Number	1

#	Date	Dept	User	Notes
1	04/05/16 11:27	PREP	JWOLFE	ALIQUOTED AND ADDED SPIKES AND TRACERS- ADDED HF AND DRIED SAMPLES DOWN- ADDED MIXED ACIDS AND TOOK SAMPLES TO DRYNESS- SUBMITTED SAMPLES TO SEPARATIONS
2	04/08/16 17:12	СНЕМ	JDEMELAS	Added concentrated HCl to sample beakers and heated to dryness; Added 20 ml 8N HCL to samples and transferred to new, labeled C-Tubes, rinsing with 8N HCl to bring volume to ~35 ml; Preconditioned resin columns with 35 ml 8N HCl; Centrifuged samples and loaded onto columns; Rinsed C-Tubes with 20 ml 8N HCl, centrifuged as needed and loaded onto columns; Rinsed columns with 35 ml 8N HCl – 0.1N NH4I, 35 ml of 6.5N HCl – 0.04N HF, and 10 ml of 6.5N HCl; Eluted Uranium with 50 ml of 0.5N HCl into clean, labeled 100 ml beakers; Dried-down samples on hotplate; Dissolved samples in ~10 ml of concentrated HCl; Transferred to new, labeled C-Tubes with DI H2O. Set samples aside for later precipitation and filtering.
3	04/11/16 05:23	CHEM	TSMITH	Followed steps 12.1.7 to 12.4.5 in AP-005 . (Precipitated and filtered samples for Uranium)

4-11-16

Printed: 4/11/2016 5:28 AM Page 1 of 1

® _	F.	Internal Work Order 16-03102 Analysis Code Run			
EBI	ERLINE SERVICES				
-	nts Used in an Analysis	UUIS	0	1	
Reagent ID	Reagent Name	Reagent Concentration	Analyst ID	Date Recorded	
017047P	Hydrofluoric Acid	Reagent Grade	JWOLFE	4/5/2016	
017152P	Nitric Acid	Reagent Grade	JWOLFE	4/5/2016	
017361P	Perchloric Acid	Reagent Grade	JWOLFE	4/5/2016	
016679P	Sulfuric Acid	Reagent Grade	JWOLFE	4/5/2016	
017230P	Anion Exchange Resin	Reagent Grade	JDEMELAS	4/8/2016	
017477S	HCI - NH4I	8N - 0.1M	JDEMELAS	4/8/2016	
017371D06	Hydrochloric Acid	0.5N	JDEMELAS	4/8/2016	
017414S	Hydrochloric Acid	6.5N	JDEMELAS	4/8/2016	
017476S	Hydrochloric Acid	8N	JDEMELAS	4/8/2016	
017371P	Hydrochloric Acid	Reagent Grade	JDEMELAS	4/8/2016	
017468S	HCI - HF	6.5N - 0.04N	JDEMELAS	4/8/2016	
017437S	Carbon substrate	Solution	TSMITH	4/11/2016	
017047P	Hydrofluoric Acid	Reagent Grade	TSMITH	4/11/2016	
016973S	Neodymium Carrier	1 mg/ml	TSMITH	4/11/2016	
017408P	Reagent Alcohol	Reagent Grade	TSMITH	4/11/2016	
016606P	Titanous Chloride	Reagent Grade	TSMITH	4/11/2016	

Mphe#1

) - pro-				3
Date	Sarplat	Creax	Jacollie	Aline.	Leauper	Tecl
3/31/16	16030514(5-11)	- I	1132	2hr50-	uu	(CS)
4/1/16	Day fulse	US	0457	14-	M	
41116	SECHLO-10)	UAB	1118	242	M	
41146	16070824114	ucon	0818	us	About	
41116	16020874(1-7)	ucen	0813	245-	Ah-240	
4/1/16	1403089A(-7)	Accupat	1354	-02-45	Rak	Kb .
4/1/14e	System Blad	المل	1714	He: Yo har		KB !
	Dwy fins	1413	0456	1-	w	
	160707 0ALI-7)	Auxie	0206	24,50	Ulutso	
	1603082A(3-4)	uor	1207	2ho0 -	1,7 5-15	KUS
	1603083A (1-4)	Uwa	1508	2hvor-	Puzuz	100
	Dwing Pulse	- USB	0213	1-	m	
415	[1603095AL1-7)	Rep. Serv.	0823	Zli	Thiso	اً ب
4/5/16	1603088A(1-4,7)		1117	2400-	780-PU	103
- 4/6/16	/ \	uer	1118	2450-	NA	M
4/6/16	Desty Pulse	- L&B	0510	14	w	
4/6/16	16040054(1-5)	United	0.750	Thru	unzso	
416116	16070718(1,2)	ust	0751	つんり	untso	
- 417	Daily Pryse	INB	000	10	M	
-117	1604017ALI-4)	udon	0800	2450	luzso	
4/7	1603096A(1-7)	Ref. gr.	0807	no	UUZSO	<u> </u>
410	Dunfala	UN IN	0454	2h5-	us .	
4/2	- SECHUT-1	-, -	1147	71-		
	-1604077A(1-4) -1604018A(1-7)	uco	0849	215	unter	
	1603 100A(6-12)	Lepublic Services	1422	2450-	1250-Th	190
4/8/14	Stoken Brad	Lais	1740	llertonas		KBI
4/11	Party fulge	VAD	0509	12	w	
4/11	160126A(1-4)	ucon	0837	245	Aure	
•	160726A(1-3)		0878	un	Shory	
4/11/le	(6-4) N2018001	Auxin	1(3)	2/100-	Uu	KB
	404019444	ucot	[132	2 hoso -	Th229	Kars
					LAN E	76 7 4

Slphitt

1							73
/ 36.	Pate	Swiffer	Chest	Josephin.	OST	Anegar.	Tea
	4/2	16040184(4)	ucon	850	rho	Ameri	ر
	4/8	1604018Act-4)	ucon	0850	ur	Aurus	
	4/2	- 1604018AU-4.7	ucon.	08 L1	25-	Pulso	×
	4/2	1604018101-4)	won	0851	24,-	Pury	
	418		nan	0852	245	1 uzs	<u> </u>
	4/3/16	1604018A(34)	uwe	1018	2h-80-	ieu	US
	4/3/10	(1404019AG4)	Ucon	1019	2h00-	Np	KAS
	4/8/40	1604018A(141)	wor	1020	2h30-	130-Th	KB
		1603016AC1-14)	Republic Services	- C D	21000-	Rate	KB-
		1603096A (1-14)	Republic Services	1149	2h00~	Role	NUB
	4/8/16	1604033A(1-2)	uan	1149	2400-	uu	145
•		16070164(15-19)	Rep. Sen	125	245-	Rule	
	412	16001004(1-5)	py. ser.	176	ur	Thezo	
	4/2/16	U0031004 (13)	Republic Services	1-144	200hs	ISO-Th	KB
<u>.</u>	419/16	160310ZA(1-6)	Auxien	1445	~ 02m2	J\$0 >>\	KB
		i	Republic Services	1446	2/180-	uu	KB
	E 2 3	System Brad	las	1740	LEND hos	1	KB
		DATH Pulsen	Lab	1023	lorning	NA	1016
. }	38∆	(Pepublic Services	1036	2400-	uu	KB
- 1	4111	Painfulse-	us	0509	10-	not	<u> </u>
	4/11	1602126A(1-4)	ucon	0179	Thou	Rele	_
	4111	16001704(1-11)	met	0529	2450	Rate	<u>_</u>
	4111	1603176A(4)	ucon	0878	24	Anny	_
- 3	4/11		wen.	0813	non	Putigo	<u> </u>
	4/11	1603126AC NY	ucon	0379	no	Parys	
	4/11	1607126A(1-4)	ucon	0839	rus-	1 /	1
	4111	16071014(18)	Ausia-	0040	2450	-uh Too	
	4/11	16021021 (1-3)	sugiler.	0840		units	1
	4/11	1607 MGANTLY)	uca	0841	•	- west	
	4111	HE Regentest ADAMY-PUL	i) Lans	0841		PLACE	
3	L		1	1			<u>مبر المبرا</u>

ISO TH NOTES

Oak Ridge Laboratory

601 Scarboro Rd. Oak Ridge, TN 37830 Voice: 865.481.0683 www.eberlineservices.com

Internal Work Order	16-03102
Analysis Code	ThISO
Run Number	1

#	Date	Dept	User	Notes
1.	04/05/16 11:27	PREP	JWOLFE	ALIQUOTED AND ADDED SPIKES AND TRACERS- ADDED HF AND DRIED SAMPLES DOWN- ADDED MIXED ACIDS AND TOOK SAMPLES TO DRYNESS- SUBMITTED SAMPLES TO SEPARATIONS

JVOIZe NIS/14

Oak Ridge Laboratory 601 Scarboro Rd. Oak Ridge, TN 37830 Voice: 865.481.0683 www.eberlineservices.com

Internal Work Order	16-03102
Analysis Code	ThISO
Run Number	1

#	Date	Dept	User	Notes
1	04/05/16 11:27	PREP	JWOLFE	ALIQUOTED AND ADDED SPIKES AND TRACERS- ADDED HF AND DRIED SAMPLES DOWN- ADDED MIXED ACIDS AND TOOK SAMPLES TO DRYNESS- SUBMITTED SAMPLES TO SEPARATIONS
2	04/07/16 16:49	CHEM	JDEMELAS	Added concentrated HNO3 to sample beakers and heated to dryness; Added 20 mt 8N HNO3 to samples and transferred to new, labeled C-Tubes, adding 8N HNO3 to bring volume to ~35 mt; Preconditioned resin columns with 50 mt 8N HNO3; Centrifuged samples as needed, and passed through columns; Rinsed C-Tubes with 20 mt 8N HNO3; Centrifuged rinsates and loaded onto columns; Rinsed columns with 40 mt 8N HNO3; Eluted Thorium with 50 mt of 8N HCI into clean, labeled 100-mt beakers; Dried-down samples on hotplate; Dissolved samples in ~10 mt of concentrated HCI; Transferred to new, labeled C-Tubes with deiononized water, bringing volume to ~15mt. Set samples aside for later precipitation and filtering.

Oak Ridge Laboratory 601 Scarboro Rd. Oak Ridge, TN 37830 Voice: 865.481.0683

www.eberlineservices.com

Internal Work Order
Analysis Code

16-03102

ThISO

Run Number 1

#	Date	Dept	User	Notes
1	04/05/16 11:27	PREP	JWOLFE	ALIQUOTED AND ADDED SPIKES AND TRACERS- ADDED HF AND DRIED SAMPLES DOWN- ADDED MIXED ACIDS AND TOOK SAMPLES TO DRYNESS- SUBMITTED SAMPLES TO SEPARATIONS
2	04/07/16 16:49	СНЕМ	JDEMELAS	Added concentrated HNO3 to sample beakers and heated to dryness; Added 20 ml 8N HNO3 to samples and transferred to new, labeled C-Tubes, adding 8N HNO3 to bring volume to ~35 ml; Preconditioned resin columns with 50 ml 8N HNO3; Centrifuged samples as needed, and passed through columns; Rinsed C-Tubes with 20 ml 8N HNO3; Centrifuged rinsates and loaded onto columns; Rinsed columns with 40 ml 8N HNO3; Eluted Thorium with 50 ml of 8N HCl into clean, labeled 100-ml beakers; Dried-down samples on hotplate; Dissolved samples in ~10 ml of concentrated HCl; Transferred to new, labeled C-Tubes with deiononized water, bringing volume to ~15ml. Set samples aside for later precipitation and filtering.
3	04/08/16 05:24	CHEM	TSMITH	Followed steps 12.2.5 to 12.4.5 in AP-005 . (Preicptiated and filtered samples for Thorium)

4816

Printed: 4/8/2016 5:28 AM Page 1 of 1

• 📆		Internal	Work Order				
	BERLINE	16-03102					
	SERVICES	Analysis Coo	le	Run			
	ents Used in an Analysis	ThIS	0	1			
Reagent ID	Reagent Name	Reagent Concentration	Analyst ID	Date Recorded			
017047P	Hydrofluoric Acid	Reagent Grade	JWOLFE	4/5/2016			
017152P	Nitric Acid	Reagent Grade	JWOLFE	4/5/2016			
017361P	Perchloric Acid	Reagent Grade	JWOLFE	4/5/2016			
016679P	Sulfuric Acid	Reagent Grade	JWOLFE	4/5/2016			
017230P	Anion Exchange Resin	Reagent Grade	JDEMELAS	4/7/2016			
017371P	Hydrochloric Acid	Reagent Grade	JDEMELAS	4/7/2016			
017349P	Nitric Acid	Reagent Grade	JDEMELAS	4/7/2016			
017465S	Hydrochloric Acid	8N	JDEMELAS	4/7/2016			
017461S	Nitric Acid	8N	JDEMELAS	4/7/2016			
017437S	Carbon substrate	Solution	TSMITH	4/8/2016			
017391S	Cerrium Carrier	0.1mg/ml	TSMITH	4/8/2016			
017047P	Hydrofluoric Acid	Reagent Grade	TSMITH	4/8/2016			
017408P	Reagent Alcohol	Reagent Grade	TSMITH	4/8/2016			

			Sla	lett-	7		1
· .				1 -			73
	Sate	Swiffett.	Client	Tradfin.	CAT.		Test !
		16040184(4)	ucon	0850	245-	Ameri	<u> </u>
	1 -	160401841-4)	ucon	085	usu	Aurus	
	4/2	- 1604018AC1-47)	Ucon	0851	215-	Puzzo	
<u> </u>	4/2	1604018AC1-4)	ucon_	0851	245-	Purya	
100		160401BA(1,2)	nan	0852	260	11475	الأبد
	1 1 2	1604018A(34)	ucol	1018	2h-80-	uu	vus
		1604018464)	Ucon	1019	2ho0-	Np	VAS
		1604018AC14)	ucor	1020	2h30-	150-Th	KB.
	4/3/10	1603096AC1-14)	Republic Services	-10	21050-	Rote	Yb-
-	4(8)4	1603096A (1-14)	Republic Servicer	1149	22000	Role	145
	4/8/16	Ue04033A(1-2)	uan'	1149	2450-	lell	1ch
	418-	16070764(15-19)	Rep. Son	125	ur-	Rule	
	418	16001004(1-5)	Ry. Ser.	176	un	Thitiso	
· 3	4/8/16	1603100H (13)	Republic Services	1-644	~00hs	ISO-Th	KB .
	419/16	160310ZA(1-6)	Auxien	1445	~ 00MS	ISO Th	CO
			Republic Services	1446	2480-	uu	KB
	-		7				
		,	,				37
							75.
			-				
			,				
1							
							+
1							
							- A
-1							
				<u>i</u>			

GAMMA NOTES

	Š		00				9.9
. /	DATE	Sample #	Client	Losettime (JiTime A	tombusis "	Tech
	47/4	GAS-149	Lab	1206	L5mw	-8	AG
	4/7/1	Daily Bled	Lab	1233	15min	8	AG KD
	ylalle	Duly Blyd System Blyce	انداه	1233	24hr	8	K/)
	4111	effiro.	140	OVIV	15	<u> </u>	C
	4/11	Dwyn	US	0576	17	V	
	4/11	Dwyn 160801-01	Auguer	0459	15 Ju	V	
	4/11	160202-01	Auger	ofsy	7_	V	-
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,	·	
					~		
			,				
							· · · · · · · · · · · · · · · · · · ·
			•				
		,					
<u> </u>		· · · · · · · · · · · · · · · · · · ·	·				
	46. P. C.						
					· · · · · · · · · · · · · · · · · · ·		
	To the second se						
				<u> </u>			
÷							
							
	-						
	<u> </u>					· · · · · · · · · · · · · · · · · · ·	
	-						
	*						
: 	*						 :
15.00		Marie Control of the		_l	l. , ,	· · · · · · · · · · · · · · · · · · ·	- Anny Control of the

Section Sectio	DATE	SAmple =#	Client	LoadTime	CT. Time	Analysis	Tech
7	411116	1604043-07	ust	0453	IL	V	
+		160404204	UST	PGGU	U	V	_
+		1654045-09	USA	0556	JL-		
À	4/11116		cist	1100	IL-	V	4
- Section Sect		1604044.03	ust	1203	In	V	-
-	4/11/16		USA	1304	11		
Sign Comme		1604044-07	USA	1405	1 hr	Y	lib
·	· v	1004044-10	USA	1507	1 h	Y	100
Name of Street, Street,		1604044-14	USA	1407	Ihr		KB
Berting	4/11/16	1604044-17	USA	1708	1) hu-	l Y	KB
		1604047-03	USA	BIL	thr	8	1CB
and the same	4/11/16	1604042-04	USA-	1912	1h	* ************************************	ICB
		CKIron	(A)	PPT	1	r	
	410	Owlyn	1913	orre	I	-	
	4/12	Pesyn	43	0596	15	r	
	4/12	1604045-08	UST	0700	Jr-	2	
	411	1604046-06	ast	obol	1h		
	4102	- 1604046-08		088	1/m	V	
	4102	1604046-41	ux	1014	In	r	
		- 160404615	UST	1117	126	V	
	4/12/16	1604064-03	City of or	1519	2 hr	8	ius
	4 lelie	he-hoopen	City of ox	1421	2 hrs	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	143
			Rep. Services	1655	Knin	Ba	KB
	ylorlu	1403094-04	CT-Dept of FEP	10-12	4hr.	Y	1CB
	4107	C481402	UN3	650	15		ς
	4117	Dedyn	Less	OCKY	18		
<u>-</u>	417	Effici	UAM	0612	15		
	4117	162102-02	Aupier	0700	de	$-V_{-}$	5
	4117	160910204	Auxier	0807	Th		$\vdash \subseteq$
	4117	1607102-05	Auster	091	21		100
 -	4/13/14	1603102-06	Auxui	1013	1.1 h	18	KB
	41116	(6001000	Auxie	1315	1		
	4 1314	1604072-03	Bionomics	1113	1 ho	18	LB
	ا مارا ال	1604072-04	Bionomics	1213	110	0	

SECTION VIII ANALYTICAL DATA (ISOTOPIC URANIUM)

Printed: 4/11/2016 5:28 AM Page 1 of 3

Project WESTLAKE NCC Report Level 4 Activity Units pCi Aliquot Units g Matrix SO Method EML U-02 Modified Instrument Type Alpha Spectroscopy Radiometric Tracer U-232 Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56		
Run 3/21/2016 Lab Deadline 4/12/2016 Client Auxier & Associates, Inc. Project WESTLAKE NCC Report Level 4 Activity Units pCi Aliquot Units g Matrix SO Method EML U-02 Modified Instrument Type Radiometric Tracer Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56 Carrier	Work Order	16-03102
Date Received Lab Deadline Client Auxier & Associates, Inc. Project Report Level Activity Units Project Aliquot Units Method Instrument Type Radiometric Tracer Radiometric Sol# Carrier J-232 Carrier	Analysis Code	UUISO
Lab Deadline Client Auxier & Associates, Inc. Project WESTLAKE NCC Report Level 4 Activity Units pCi Aliquot Units g Matrix SO Method EML U-02 Modified Instrument Type Radiometric Tracer Radiometric Sol# U-10a Tracer Act (dpm/g) Tracer Carrier	Run	1
Client Auxier & Associates, Inc. Project WESTLAKE NCC Report Level 4 Activity Units pCi Aliquot Units g Matrix SO Method EML U-02 Modified Instrument Type Alpha Spectroscopy Radiometric Tracer U-232 Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56	Date Received	3/21/2016
Project WESTLAKE NCC Report Level 4 Activity Units pCi Aliquot Units g Matrix SO Method EML U-02 Modified Instrument Type Alpha Spectroscopy Radiometric Tracer U-232 Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56	Lab Deadline	4/12/2016
Report Level 4 Activity Units pCi Aliquot Units g Matrix SO Method EML U-02 Modified Instrument Type Alpha Spectroscopy Radiometric Tracer U-232 Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56 Carrier	Client	Auxier & Associates, Inc.
Activity Units Aliquot Units G Matrix SO Method EML U-02 Modified Instrument Type Alpha Spectroscopy Radiometric Tracer Radiometric Sol# U-10a Tracer Act (dpm/g) Carrier	Project	WESTLAKE NCC
Aliquot Units Matrix SO Method EML U-02 Modified Instrument Type Alpha Spectroscopy Radiometric Tracer U-232 Radiometric Sol# U-10a Tracer Act (dpm/g) Carrier	Report Level	4
Matrix SO Method EML U-02 Modified Instrument Type Alpha Spectroscopy Radiometric Tracer U-232 Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56 Carrier	Activity Units	pCi
Method EML U-02 Modified Instrument Type Alpha Spectroscopy Radiometric Tracer U-232 Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56 Carrier	Aliquot Units	g
Instrument Type Alpha Spectroscopy Radiometric Tracer U-232 Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56 Carrier	Matrix	so
Radiometric Tracer U-232 Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56 Carrier	Method	EML U-02 Modified
Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56 Carrier	Instrument Type	Alpha Spectroscopy
Tracer Act (dpm/g) 18.56 Carrier	Radiometric Tracer	U-232
Carrier	Radiometric Sol#	U-10a
	Tracer Act (dpm/g)	18.56
Carrier Conc (mg/ml)	Carrier	
	Carrier Conc (mg/ml)	

Internal Fraction	Sample Desc	Client ID	Login CPM	Sample Date	Sample Aliquot
01	LCS	LCS		03/22/16 00:00	1.0000E+00
02	MBL	BLANK	- 14.11	03/22/16 00:00	1.0000E+00
03	DUP	SEDIMENT 2016-03-16A	36	03/16/16 13:35	9.9820E-01
04	DO	SEDIMENT 2016-03-16A	36	03/16/16 13:35	9.9600E-01
05	TRG	SEDIMENT 2016-03-16B	38	03/16/16 13:55	1.0019E+00
06	TRG	SEDIMENT 2016-03-16B DUP	34	03/16/16 13:55	1.0046E+00
					·
	-				
	a a	The state of the s			

^{*} SAF1 is used for Gross Alpha and all other radionuclides. SAF2 is used for Gross Beta only. ^ Indicates estimated SAF value. ** Actual mass exceeded the calibration curve range. Results should be qualified as appropriate.

Printed: 4/11/2016 5:28 AM Page 2 of 3

Internal Fraction	Sample Desc	Tracer Aliquot (g)	Tracer Total ACT (dpm)	Radiometric Tracer (pCi)	Radiometric % Rec	Grav Carrier Added (ml)	Grav Filter Tare (g)	Grav Filter Final (g)	Grav Filter Net (g)	Grav % Rec	Mean % Rec	SAF 1*	SAF 2*
01	LCS	0.6058	11.2		0.00								
02	MBL	0.6060	11.2		0.00								
03	DUP	0.6042	11.2		0.00								
04	DO	0.6047	11.2		0.00								
05	TRG	0.6045	11.2	,	0.00								
06	TRG	0.6019	11.2		0.00								
												É	
		****						·					
			1								,		
				:									
					<u> </u>								
							<u> </u>						

^{*} SAF1 is used for Gross Alpha and all other radionuclides. SAF2 is used for Gross Beta only. ^ Indicates estimated SAF value. ** Actual mass exceeded the calibration curve range. Results should be qualified as appropriate.

Internal Fraction	Sample Desc	Rough Prep Date	Rough Prep By	Prep Date	Prep By	Sep t0 Date/Time	Sep t0 By	Sep t1 Date/Time	Sep t1 By
01	LCS			04/05/16 11:17	JWOLFE				
02	MBL			04/05/16 11:17	JWOLFE				
03	DUP	1.0.000		04/05/16 11:17	JWOLFE				
04	DO	03/23/16 07:28	KSALLINGS	04/05/16 11:17	JWOLFE				
05	TRG	03/23/16 07:28	KSALLINGS	04/05/16 11:17	JWOLFE				
06	TRG	03/23/16 07:28	KSALLINGS	04/05/16 11:17	JWOLFE				
					<u></u>				

^{*} SAF1 is used for Gross Alpha and all other radionuclides. SAF2 is used for Gross Beta only.
^ Indicates estimated SAF value.
** Actual mass exceeded the calibration curve range. Results should be qualified as appropriate.

Preliminary Data Report & Analytical Calculations

Work Order: 16-03102-UUISO-1

Printed: 4/11/2016 2:52 PM Page 1 of 3

	8
Run	~
Analysis Code	UNISO
Eberline Analytical Work Order	16-03102
Client Client	Auxier & Associates, Inc.

Lab Fraction	Nuclide	Sample Desc	Client Identification	Activity Units	Results	Error Estimate	MDA	LCS Known	LCS %R	LCS Flag	RPD Flag	MDA Flag	Blank Flag
01	U-234	LCS	LCS	pCi/g	6.27E+00	9.07E-01	8.21E-02	7.31E+00	85.77	ок		ок	
02	U-234	MBL	BLANK	pCi/g	1.01E-01	8.04E-02	8.61E-02					ок	ок
03	U-234	DUP	SEDIMENT 2016-03-16A	pCi/g	1.17E+00	3.15E-01	1.03E-01				ок	ок	
04	U-234	DO	SEDIMENT 2016-03-16A	pCi/g	9.48E-01	2.56E-01	8.19E-02					ок	
05	U-234	TRG	SEDIMENT 2016-03-16B	pCi/g	9.34E-01	2.66E-01	1.05E-01					ок	
06	U-234	TRG	SEDIMENT 2016-03-16B DUP	pCi/g	9.29E-01	2.78E-01	1.34E-01					ок	
	-												

Preliminary Data Report & Analytical Calculations

Work Order: 16-03102-UUISO-1

Printed: 4/11/2016 2:52 PM

Page 2 of 3

æ	(2)	Lab Fraction	Nuclide	Sample Desc	Sample Date	Sample Aliquot	Radiometric % Rec	Grav % Rec	Mean % Rec	SAF	Sep t0 Date/Time	Sep t1 Date/Time
		01	U-234	LCS	03/22/16 00:00	1.00E+00	117.61	0.00	0.00			
ш		02	U-234	MBL	03/22/16 00:00	1.00E+00	113.01	0.00	0.00			
Run		03	U-234	DUP	03/16/16 13:35	9.98E-01	92.07	0.00	0.00			
o.		04	U-234	DO	03/16/16 13:35	9.96E-01	113.86	0.00	0.00			
s Cod	SC	05	U-234	TRG	03/16/16 13:55	1.00E+00	88.81	0.00	0.00			
Analysis Code	OSIOO	06	U-234	TRG	03/16/16 13:55	1.00E+00	81.02	0.00	0.00			
4												
Order	7											
Eberline Analytical Work Order	6-03102											
ılytical	03											
пе Апа	-9											
Eberli	7											
	lnc.											
	ates											
ıt	oci											
Client	Associates,											
	ంద					-						
C	ا گزارا die											
8	Auxier											
$\frac{Q}{8}$	<u> </u>	L	<u></u>		<u></u> .		1	!	J	1		

Printed: 4/11/2016 2:52 PM Page 3 of 3

(
Run	~
Analysis Code	OSINO
Eberline Analytical Work Order	16-03102
OOO client	കൃശ Auxier & Associates, Inc.

Lab Fraction	Nuclide	Sample Desc	Counting Date/Time	Halflife (days)	Detect	Carrier	Count Time	Counts	Bkg CPM	Eff
01	U-234	LCS	04/11/16 08:40		A_Spec	Alpha_056	170	4.57 E+02	5.00 E-03	16.5
02	U-234	MBL	04/11/16 08:40		A_Spec	Alpha_057	170	7.00 E+00	0.00 E+00	16.4
03	U-234	DUP	04/11/16 08:40		A_Spec	Alpha_058	170	6.80 E+01	0.00 E+00	16.8
04	U-234	DO	04/11/16 11:31		A_Spec	Alpha_003	170.03	6.53 E+01	4.00 E-03	16.1
05	U-234	TRG	04/11/16 11:31		A_Spec	Alpha_004	170.02	5.88 E+01	7.00 E-03	18.8
06	U-234	TRG	04/11/16 11:31		A_Spec	Alpha_010	170.02	5.40 E+01	1.20 E-02	19
										*
				1						
						1				
				-						
										_

Preliminary Data Report & Analytical Calculations

Work Order: 16-03102-UUISO-1

Printed: 4/11/2016 2:52 PM Page 1 of 3

0	3
Run	_
Analysis Code	OSINN
Eberline Analytical Work Order	16-03102
Client	Auxier & Associates, Inc.

Lab Fraction	Nuclide	Sample Desc	Client Identification	Activity Units	Results	Error Estimate	MDA	LCS Known	LCS %R	LCS Flag	RPD Flag	MDA Flag	Blank Flag
01	U-238	LCS	LCS	pCi/g	6.17E+00	8.95E-01	7.70E-02	7.08E+00	87.23	ок		ок	
02	U-238	MBL	BLANK	pCi/g	6.66E-02	6.35E-02	6.84E-02					ок	ок
03	U-238	DUP	SEDIMENT 2016-03-16A	pCi/g	9.04E-01	2.71E-01	1.13E-01				ок	ок	
04	U-238	DO	SEDIMENT 2016-03-16A	pCi/g	1.11E+00	2.79E-01	6.03E-02					ОК	
05	U-238	TRG	SEDIMENT 2016-03-16B	pCi/g	9.96E-01	2.75E-01	9.48E-02					ок	,
06	U-238	TRG	SEDIMENT 2016-03-16B DUP	pCi/g	6.80E-01	2.29E-01	8.19E-02					ок	
								-					
				<u> </u>									
								<u> </u>					
									<u> </u>				

Page 2 of 3

(
Run	~
Analysis Code	OSINN
Eberline Analytical Work Order	16-03102
Client	Auxier & Associates, Inc.

Lab Fraction	Nuclide	Sample Desc	Sample Date	Sample Aliquot	Radiometric % Rec	Grav % Rec	Mean % Rec	SAF	Sep t0 Date/Time	Sep t1 Date/Time
01	U-238	LCS	03/22/16 00:00	1.00E+00	117.61	0.00	0.00			
02	U-238	MBL	03/22/16 00:00	1.00E+00	113.01	0.00	0.00			
03	U-238	DUP	03/16/16 13:35	9.98E-01	92.07	0.00	0.00			
04	U-238	DO	03/16/16 13:35	9.96E-01	113.86	0.00	0.00			
05	U-238	TRG	03/16/16 13:55	1.00E+00	88.81	0.00	0.00			
06	U-238	TRG	03/16/16 13:55	1.00E+00	81.02	0.00	0.00			
-										
					1	l		1		

Work Order: 16-03102-UUISO-1

Printed: 4/11/2016 2:52 PM

Page 3 of 3

		Lab Fraction	Nuclide	Sample Desc	Counting Date/Time	Halflife (days)	Detect	Carrier	Count Time	Counts	Bkg CPM	Eff
'		01	U-238	LCS	04/11/16 08:40		A_Spec	Alpha_056	170	4.52 E+02	4.00 E-03	16.5
-		02	U-238	MBL	04/11/16 08:40		A_Spec	Alpha_057	170	4.66 E+00	2.00 E-03	16.4
Run	 	03	U-238	DUP	04/11/16 08:40		A_Spec	Alpha_058	170	5.28 E+01	7.00 E-03	16.8
		04	U-238	DO	04/11/16 11:31		A_Spec	Alpha_003	170.03	7.68 E+01	1.00 E-03	16.1
Analysis Code	OSINN	05	U-238	TRG	04/11/16 11:31		A_Spec	Alpha_004	170.02	6.30 E+01	0.00 E+00	18.8
nalysi	5	06	U-238	TRG	04/11/16 11:31		A_Spec	Alpha_010	170.02	3.97 E+01	2.00 E-03	19
4	7											
rder												
Eberline Analytical Work Order	16-03102											
lvtical	33,				· · ·							
ne Ana	9-9							!				
Eberli	7											
	ن											
	, n											
	ates											
1	oci											
Client	Ass											
	- భ											
	Auxier & Associates, Inc.											
	Au											
14 L	1	J L	1		L			100		·····	 	

Preliminary Data Report & Analytical Calculations

Work Order: 16-03102-UUISO-1

Printed: 4/11/2016 2:52 PM

Page 1 of 3

(
Run	_
Analysis Code	UNISO
Eberline Analytical Work Order	16-03102
Client	Auxier & Associates, Inc.

Lab Fraction	Nuclide	Sample Desc	Client Identification	Activity Units	Results	Error Estimate	MDA	LCS Known	LCS %R	LCS Flag	RPD Flag	MDA Flag	Blank Flag
01	U-235	LCS	LCS	pCi/g	5.13E-01	1.94E-01	9.54E-02					ок	
02	U-235	MBL	BLANK	pCi/g	3,54E-02	6.03E-02	1.06E-01					ок	ок
03	U-235	DUP	SEDIMENT 2016-03-16A	pCi/g	1.27E-01	1.11E-01	1.27E-01				NA	ок	
04	U-235	DO	SEDIMENT 2016-03-16A	pCi/g	9.53E-02	8.75E-02	1.01E-01					ок	
05	U-235	TRG	SEDIMENT 2016-03-16B	pCi/g	1.14E-01	9.53E-02	8.18E-02					ок	
06	U-235	TRG	SEDIMENT 2016-03-16B DUP	pCi/g	1.55E-01	1.20E-01	1.20E-01					ок	
				<u> </u>				***					
					-								
													
									1		<u> </u>		

Work Order: 16-03102-UUISO-1

Printed: 4/11/2016 2:52 PM

Page 2 of 3

Œ	3	Lab Fraction	Nuclide	Sample Desc	Sample Date	Sample Aliquot	Radiometric % Rec	Grav % Rec	Mean % Rec	SAF	Sep t0 Date/Time	Sep t1 Date/Time
, and	3	01	U-235	LCS	03/22/16 00:00	1.00E+00	117.61	0.00	0.00			
и		02	U-235	MBL	03/22/16 00:00	1.00E+00	113.01	0.00	0.00			
Run	7	03	U-235	DUP	03/16/16 13:35	9.98E-01	92.07	0.00	0.00			
es.		04	U-235	DO	03/16/16 13:35	9.96E-01	113.86	0.00	0.00			
cod	SC	05	U-235	TRG	03/16/16 13:55	1.00E+00	88.81	0.00	0.00		,	
Analysis Code	OSINO	06	U-235	TRG	03/16/16 13:55	1.00E+00	81.02	0.00	0.00			
Eberline Analytical Work Order	16-03102											
Client	Auxier & Associates, Inc.											

Printed: 4/11/2016 2:52 PM Page 3 of 3

Work Order: 16-03102-UUISO-1

Lab Fraction	Nuclide	Sample Desc	Counting Date/Time	Halflife (days)	Detect	Carrier	Count Time	Counts	Bkg CPM	Eff
01	U-235	LCS	04/11/16 08:40		A_Spec	Alpha_056	170	3.03 E+01	4.00 E-03	16.5
02	U-235	MBL	04/11/16 08:40		A_Spec	Alpha_057	170	2.00 E+00	0.00 E+00	16.4
03	U-235	DUP	04/11/16 08:40		A_Spec	Alpha_058	170	6.00 E+00	0.00 E+00	16.8
04	U-235	DO	04/11/16 11:31		A_Spec	Alpha_003	170.03	5.32 E+00	4.00 E-03	16.1
05	U-235	TRG	04/11/16 11:31		A_Spec	Alpha_004	170.02	5.83 E+00	1.00 E-03	18.8
06	U-235	TRG	04/11/16 11:31		A_Spec	Alpha_010	170.02	7.32 E+00	4.00 E-03	19
					!					:
								-		
								-		
	<u> </u>						L			

Run

Analysis Code

Eberline Analytical Work Order

UNISO

16-03102

Auxier & Associates, Inc.

Count Room Report
Client: Auxier Associates, Inc.

16-03102-UUISO-1 (pCi/g) in SO Tracer ID: U-10a

Printed: 4/11/2016 5:28 AM Page 1 of 1

	Internal Fraction	Sample Desc	Client ID	Sample Date	Sample Aliquot	Tracer Aliquot (g)	Tracer ACT (dpm)	Radiometric Tracer (pCl)	Radiometric % Rec	SAF 1*	SAF 2*
5	01	LCS	LCS	03/22/16 00:00	1.0000	0.6058	11.2436		0.00		
	0,2	MBL	BLANK	03/22/16 00:00	1.0000	0.6060	11.2474		0.00		
وُمُ	03	DUP	SEDIMENT 2016-03-16A	03/16/16 13:35	0.9982	0.6042	11.2140		0.00		
,	04	DQ	SEDIMENT 2016-03-16A	03/16/16 13:35	0.9960	0.6047	11.2232		0.00		
	05	TRG	SEDIMENT 2016-03-16B	03/16/16 13:55	1.0019	0.6045	11.2195		0.00		·
	06	TRG	SEDIMENT 2016-03-16B DUP	03/16/16 13:55	1.0046	0.6019	11.1713		0.00		
ŀ											
ļ											
											
						2					
		-									
		_									
						-					
						1	<u> </u>				-

Spike and Tracer Worksheet

Page 1 of 1 Printed: 4/5/2016 11:17 AM

	Internal V	Vork Order		Run	Analysi	s Code	D	ate		Techi	nician		Technicia	an Initials	Witness	Initials
		3102		1	UUI	SO	4/5/201	6 11:14		JWC	LFE		1/2	<u> </u>		
	LCS	& Matrix Sp	ikes		LCS	MS	LCSD	MSD	LC	S	M	S	LC	SD	rishina M S	3D
Isotope	Sol#	Activity dpm/g	Solution Date	Approx Addition	Volume Used (g)	Volume Used (g)	Volume Used (g)	Volume Used (g)	Known pCi	Error Estimate	Added pCi	Error Estimate	Known pCi	Error Estimate	Added pCI	Error Estimate
U-234	U-8a	32.000	4/5/2016	0.550	0.5068				7.31	0.263	0.00	0.000	0.00	0.000	0.00	0.000
U-238	U-8a	31.000	4/5/2016	0.550	0.5068				7.08	0.255	0.00	0.000	0.00	0.000	0.00	0.000
Tc-99 MS	Tc-2a	22043.636	//5/2014	0.1	Insuceds/Breseles					Dal.	ance Prir	itar Tanc				
			Tracers Activity	Solution	Volume	Approx	ers agriculture	The state of the s	Tracer	ne roar		ice i i apc	A-440 atau - 121 at	LCS	endiren indirectioned	<u> 1966 - 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. </u>
fraction	Isotope	Sol#	dpm/g	Date	Used (g)	Addition			118001							
01	U-232	U-10a	18.560	4/5/2016	0.6058	0.6500										
02	U-232	U-10a	18.560	4/5/2016	0.6060	0.6500									•	
03	U-232	U-10a	18.560	4/5/2016	0.6042	0.6500				_	.0					
04	U-232	U-10a	18.560	4/5/2016	0.6047	0.6500								a. Se	168 q	
05	U-232	U-10a	18.560	4/5/2016	0.6045	0.6500								w 2 W W		
06	U-232	U-10a	18.560	4/5/2016	0.6019	0.6500	• •		0,60	58 9						
									9.69							
										142 g. 147 g						
							<u> </u>			345 g.						
										919 g				Matrix Spi	Ke	
							_									

Aliquot Worksheet

Printed: 4/5/2016 9:44 AM

Page 1 of 1

Work Order	Run	Analysis Code	Rpt Units	Lab Deadline	Technician
16-03102	1	UUISO	grams	4/12/2016	JWOLFE

	Auxier & Associates, Inc.	Sample	Muffle Data	44111711	Dilution Data	Aliquo	t Data	MS Alic	uot Data	H-3 Solid	s Only
Lab raction	Client ID	Type	Ratio Post/Pre	No of Dils	Dil Factor Ratio	Aliquot	Net Equiv	Aliquot	Net Equiv	Water Added (ml)	H3 Dist Aliq
01	LCS	LCS	Os Alikus - S			1.0000E+00	1.0000E+00				
02	BLANK	MBL	are dance of			1.0000E+00	1.0000E+00		5.1		
03	SEDIMENT 2016-03-16A	DUP		Philips 15-1-14		9.9820E-01	9.9820E-01				
04	SEDIMENT 2016-03-16A	DO				9.9600E-01	9.9600E-01	•			
05	SEDIMENT 2016-03-16B	TRG				1.0019E+00	1,0019E+00				
06	SEDIMENT 2016-03-16B DUP					1.0046E+00	1.0046E+00				
-							in in the second				
•											
		i									
-		l	1								
	1			3. 62 (2. 49)							
			engeligher, et selletige Geskalballer, et Gal								

	···	 	 	
Comments				

Technician: MOI Pedate: 45/14

Rough Sample Preparation Log Book

Printed: 3/23/2016 7:28 AM

Page 1 of 1

Work Order	Lab Deadline	Date Received in Prep	Date Sealed	Date Returned	Technician
16-03102	4/12/2016	3/22/2016	3/23/2016	3/24/2016	KSALLINGS

Eberline	Auxier & Associates, Inc.	Tare (g)	Gross	(g)	Net	(g)	Perc	ent	Gam	ma	Special
Fraction	Client ID	Pan Wt	Wet Wt.	Dry Wt.	Wet Wt.	Dry Wt.	Liquid	Solid	Dry Wt.	LEPS Wt.	Info
04	SEDIMENT 2016-03-16A	28.8600	1273.0600	743.5800	1244.2000	714.7200	42.56%	57.44%	0.0000	0.0000	
05	SEDIMENT 2016-03-16B	29.1400	1389.3600	944.9200	1360.2200	915.7800	32.67%	67.33%	0.0000	0.0000	
06	SEDIMENT 2016-03-16B DUP	29.0300	1180.8600	824.3000				69.04%	0.0000	0.0000	
				-							
							dien en menden geste i				
									-		
									1000		

Comments		4
Special Codes	H: Hot, O: Organic Hazard, P: PCB Hazard, R: Rush, T: Other (see comments)	

Technician: Karry Scar

Date: Analysis: Rough Prep Logbook

Analysis: UUISO Page No. 9578

SPIKE

Spectrum File:

\\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001482

Batch Identification:

1603102A-UU

Sample Identification: Sample Geometry:

Shelf 2

Procedure Description:

U iso

Detector Name:

Alpha_056

Chamber Serial Number:

10006124B

Detector Serial Number: 56

01

Reagent Blank:

Env. Background: System Bkgd 149954 <not performed>

Sample Size:

1.000E+000 +/- 0.000E+000 gram

Sample Date/Time:

4/11/2016 6:26:08 AM

Acquisition Date/Time: Acquisition Live Time:

4/11/2016 8:40:57 AM

Acquisition Real Time:

170.0 minutes 170.0 minutes

Tracer Certificate:

U232_UU-10A

Tracer Quantity:

0.606 mL 0.1937 +/- 0.0111

Effective Efficiency: Counting Efficiency:

0.1647 +/- 0.0029 on 12/11/2015 11:36:29 AM

Chem. Recovery Factor:

1.1761 +/- 0.0703

Control Certificate Name: NatU_U-8A Chem. Recov. of Control: U-238

0.767368 +/- .0.061276

Peak Match Tolerance:

0.150 MeV

			<i></i>					
			PEAK	AREA RI	EPORT			
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	Reagent Backgnd	FWHM (keV)	
U-232 U-234 U-235 U-238	 Т	5.273 4.729 4.386 4.151	367.64 457.15 30.32 452.32	10.24 9.18 36.06 9.22	1.36 0.85 0.68 0.68	0.00E+000 0.00E+000 0.00E+000 0.00E+000	6.3 22.6 3.0 9.4	

T = Tracer Peak used for Effective Efficiency

NUCLIDE ANALYSIS RESULTS

Nuclide	Id	Energy	Activity	MDA
	Conf.	(keV)	(pCi/gram)	(pCi/gram)
U-232	0.994	5302.50*	5.04E+000 +/- 5.64E-001	9.40E-002 +/- 1.05E-002
U-234	0.993	4761.50*	6.27E+000 +/- 9.07E-001	8.21E-002 +/- 9.19E-003
U-235	1.000	4385.50*	5.13E-001 +/- 1.94E-001	9.54E-002 +/- 1.07E-002
II-238	0.992	4184.40*	6.17E+000 +/- 8.95E-001	7.70E-002 +/- 8.62E-003

**************** ***** SPECTRAL DATA REPORT ***** *************

Sample Title: 01

Elapsed Live time: Elapsed Real Time: 10200 10200

ou 7 [- 1	1	1	1			 	
Channel 1:	0	 0	0	1	0	0	0	o ¹
9:	0	0	ő	ō	1	0	1	0
17:	ŏ	Ö	Ŏ	Ō	0	0	0	0
25:	ő	Ö	0	Ô	0	0	0	0
33:	Ö	Ö	0	0	0	0	0	0
41:	Ö	0	0	0	0	0	0	0
49:	Õ	0	1	1	0	1	0	1
57:	ī	0	0	0	0	0	0	0
65:	0	0	0	1	0	0	0	0
73:	0	0	1	0	0	0	0	0
81:	0	0	0	0	0	0	0	0
89:	0	0	0	0	0	0	1	0
97:	0	0	0	1	0	0	0	0
105:	1	0	0	0	0	0	0	0
113:	1	0	0	.0	0	1	0	1
121:	0	0	0	0	0	0	1	0
129:	0	0	0	0	1	0	0	0
137:	1	0	1	0	1	0	1 0	0 0
145:	0	0	0	0	1	0		1
153:	0	1	2	0	0	0	0	0
161:	0	0	0	0	1	3 1	1	2
169:	2	1	1	0	1	1	1	1
177:	0	1	0	0	0 1	0	1	0
185:	0	0	2	1 0	0	0	0	6
193:	1	1	1 0	0	3	2		Ö
201:	2	1 1	0	2	1	4		1
209:	2	4	7	1	3	7		8
217:	4 3	5	4	15	8	10		12
225: 233:	<i>3</i> 7	8	10	10	9	5		13
233: 241:	13	11	15	14	10	11		16
241:	8	12	10	14	15	13		7
249: 257:	5	5	5	4	2	0		1
265:	0	0	Ō	ō	0	0		0
273:	Ö	ŏ	Ŏ	0	0	0	1	0
281:	Õ	Ō	0	0	1	2	1	1
289:	2		0	0	1	2	0	0
297:	2 0	1 1	0	1	0	0	0	1
305:	0	0	1	1	0	0		0
313:	1	0	2	1 1 2 0	1	0		0
321:	0	0	3		0	0		1
329:	1	0	0 0 1 2 3 0 1	0	0			0
337:	1	0	1	0	0			0
345:	0	0	0	0			. 1	0
353:	1	1	1	0	0		0	0 1 0 0 1 0 0 0
361:	0	0	0	2	0	1	. 0	U

753:

761:

769:

777:

785:

793:

Channel	Data Repo	ort		4/11/2016	2:25:2	26 PM		Page 3
801:	0	0	0	0	0	0	0	0
	Sample T	Title: 0	1			·		
Channel 809: 817: 825: 833: 841: 849: 857: 865: 873: 889: 905: 913: 929: 937: 945: 969: 977: 985: 993:								000000000000000000000000000000000000000
1001: 1009: 1017:	0 0	0 0	0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0

Spectrum File:

BLANK

Batch Identification:

\\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001482

1603102A-UU

Sample Identification: Sample Geometry:

02 Shelf 2 Procedure Description: U iso

Detector Name:

Alpha 057

Chamber Serial Number: Detector Serial Number: 57

01017326A

Reagent Blank:

Env. Background: System Bkgd 149955 <not performed>

1.000E+000 +/- 0.000E+000 gram

Acquisition Date/Time: 4/11/2016 6:26:08 AM
Acquisition Live Time: 170.0 minutes
Acquisition Real Time: 170.0 minutes

Tracer Certificate: Tracer Quantity:

U232 UU-10A 0.606 mL

Effective Efficiency: 0.1849 +/- 0.0108
Counting Efficiency: 0.1636 +/- 0.0029 on 12/11/2015 11:36:28 AM
Chem. Recovery Factor: 1.1301 +/- 0.0687

Peak Match Tolerance: 0.150 MeV

			PEAK	AREA RI	EPORT			
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	Reagent Backgnd	FWHM (keV)	
U-232 U-234 U-235 U-238	T	5.283 4.762 4.423 4.174	351.00 7.00 2.00 4.66	10.48 79.20 169.74 94.59	0.00 0.00 0.00 0.34	0.00E+000 0.00E+000 0.00E+000 0.00E+000	25.9 3.0 3.0 3.0	

T = Tracer Peak used for Effective Efficiency

 _	-		
 NUCLIDE	ANALYSIS	RESULTS	

Nuclide	Id	Energy	Activity	MDA
	Conf.	(keV)	(pCi/gram)	(pCi/gram)
U-232	0.997	5302.50*	5.04E+000 +/- 5.75E-001	8.61E-002 +/- 9.82E-003
U-234	1.000	4761.50*	1.01E-001 +/- 8.04E-002	8.61E-002 +/- 9.82E-003
U-235	0.990	4385.50*	3.54E-002 +/- 6.03E-002	1.06E-001 +/- 1.21E-002
U-238	0.999	4184.40*	6.66E-002 +/- 6.35E-002	6.84E-002 +/- 7.80E-003

*************** **** S P E C T R A L D A T A R E P O R T *****

Sample Title: 02

Elapsed Live time: Elapsed Real Time: 10200 10200

Channel -	-			l _ 	_			-
1:	0	0	0	0	1	o '	o'	o'
9:	ő	0	Ö	Ö	ō	Ō	Ō	0
17:	Ö	0	Ö	Ö	Ö	Ō	0	0
25:	ő	Ö	Õ	Ö	Ō	0	0	0
33:	Ö	Ö	Ö	Ö	Ō	0	0	0
41:	ĺ	Ö	1	Ō	0	0	0	0
49:	ō	Ō	Ō	0	0	0	0	0
57:	Ö	Ö	Ō	1	0	0	0	0
65:	Ō	Ō	0	0	0	0	0	0
73:	Ō	0	0	0	0	0	0	0
81:	0	0	0	0	0	0	0	0
89:	0	0	0	0	0	0	0	0
97:	0	0	0	0	0	0	0	0
105:	0	. 0	0	0	0	0	0	0
113:	0	0	0	0	0	0	0	0
121:	0	0	0	0	0	0	1	0
129:	0	0	0	0	0	0	0	1
137:	0	0	0	0	1	0	0	0
145:	0	0	0	0	1	0	0	0
153:	0	0	0	0	0	0	0	0
161:	0	0	0	0	0	0	0	0
169:	0	0	0	0	0	0	0	0
177:	0	0	0	0	0	0	0	0
185:	0	0	0	0	0	0	0	0
193:	0	0	0	0	0	0	0	0
201:	0	0	0	0	0	0	0	0
209:	0	0	0	0	0	0	0	0
217:	0	0	0	0	0	0	0	0 0
225:	0	0	0	0	0	0	0	0
233:	0	0	1	0	1	1 0	0 0	0
241:	0	0	0	0	0 0	0	0	0
249:	0	0	1	0	0	0	0	Ö
257:	0	0	0	0 0	0	0	0	1
265:	0	0	0 0	0	0	0	. 0	Ō
273:	0	0	^	0	0	0	, 0	0
281:	0	0	0	0	0	0	Ö	ő
289:	0	0	0	0	0	Ö	Ŏ	ő
297:	0	0	0	0	1	Ö	ő	Ő
305: 313:	0	Ö	Ö	0	Ō	Ö	Ö	Ō
321:	0	0	0	0	Ö	Ö	Ö	Ö
329:	0	Ö	Ö	0 0	Ö	Ö	Ō	0
337:	0	0	Ö	Ö	Ö	Ö	Ö	ō
345:	0	0	Ö	Ö	Ö	Ö	Ö	1
353:	Ö	Ö	ő	Ö	Ö	Ö	Ō	0
361:	Ö	Ö	ő	Ö	Ö	Ō	0	1
J V •	v	~	•	•	-			

Channel	Data Rej	port		4/11/20:	16 2:2!	5:34 PM		Page
369:	0	0	0	0	0	0	0	0
	Sample	Title:	02					
Channel								
377:	' o'	o ·	0	0	0	0	1	0
385:	0	0	2	0	0	0	0	0
393:	Ô	Ō	0	0	0	0	0	0
401:	Ö	Ö	0	Ó	0	0	0	0
409:	0	0	Ö	Ō	Ō	0	0	0
417:	0	0	0	Ö	Ö	0	1	0
	0	0	0	1	Ö	Ö	0	0
425:	J	1	0	0	Ö	ő	Ö	Ō
433:	0	0	1	0	0	Ö	ő	ō
441:	0			0	0	0	ő	Ö
449:	0	0	0	0	0	0	ő	Ö
457:	1	1	0		0	0	0	ő
465:	0	0	0	1	•	0	0	ő
473:	0	0	0	0	0		0	0
481:	0	0	0	0	0	0		0
489:	0	0	0	0	0	0	0	0
497:	0	0	0	0	1	0	0	
505:	0	0	0	0	0	0	0	0
513:	0	0	0	0	0	0	1	0
521:	0	0	0	0	0	1	0	0
529:	0	0	0	0	0	0	0	0
537:	0	0	0	0	0	0	0	0
545:	0	2	0	0	0	0	0	0
553:	1	0	0	0	0	1	0	1
561:	0	0	1	1	0	0	0	0
569:	2	2	1	0	0	0	0	0
577 :	0	2	0	1	0	1	0	1
585:	0	2	1	0	2	3	3	0
593:	0	3	1	1	2	5	0	5
601:	6	0	1	7	2	7	8	6
609:	5	8	3	8	7	6	11	6
617:	11	3	8	3	9	7	13	11
625:	9	11	18	13	16	18	14	13
633:	14	11 7	9	9	9 16 5	18 3	1	1
641:	0	0	0	0	0	0	0	1
649:	Ō	0	0	0	0	0	0	0
657:	Ō	0	0		0	0	0	0
665:	Ō	0	0		0	0	0	0
673:	Ō	0	0		0	0	0	0
681:	Ō	0	0		0	0	0	0
689:	1	0	0		0	0	0	0
697:	0	ő	0		0	0	0	1
705:	Ŏ	0	1	0	0	0	0	0
713:	Ö	Ö	0	0	0	0	1	0
721:	0	0	0	0	0	0	0	0
729:	0	Ö	0	0	0	0	0	0
729: 73 7 :	0	0	0	0 0 0 0 0	Ö	0	0	0
737: 745:	0	0	0	0	0	Ō	0	0
	0	0	0	0	Ö	0	0	Ō
753:	1	0	0		Ö	ő	0	Ō
761:	1	0	0	0	0	Ő	Ö	Ö
769:	0	0	0		0	0	1	1
777:	0	0	0		0	0	0	ō
785:		0			0	0	0	Ö
793:	0	U	U	J	U	J	U	Ŭ

Channel	Data Report	=		4/11/2016	2:25:	34 PM		Page	3
801:	0	0	0	0	0	0	0	0	
	Sample Tit	cle:	02						
Channel 809: 817: 825: 833: 841:	 0 0 0 0	 0 0 0 0	 0 0 0 0	 0 0 0 0	 0 0 0 0	 0 0 0 0	- 0 0 0 0	0 0 0 0 0	
849: 857: 865: 873: 881:	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	
889: 897: 905: 913:	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	
921: 929: 937: 945: 953: 961:	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	
969: 977: 985: 993: 1001: 1009:	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	

Spectrum File:

SEDIMENT 2016-03-16A-DUP \\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001482

1603102A-UU Batch Identification:

Sample Identification: 03 Sample Geometry:

Procedure Description: U iso

Shelf 2

Detector Name:

Chamber Serial Number: 01017326B

Detector Serial Number: 58

Reagent Blank:

Alpha 058

Env. Background: System Bkgd 149956 <not performed>

9.982E-001 +/- 0.000E+000 gram

Acquisition Date/Time:

Acquisition Live Time:

Acquisition Real Time

Tracer Certificate: Tracer Quantity:

U232 UU-10A 0.604 mL

Effective Efficiency: 0.1547 +/- 0.0097
Counting Efficiency: 0.1680 +/- 0.0030 on 12/11/2015 11:36:26 AM
Chem. Recovery Factor: 0.9207 +/- 0.0601

Peak Match Tolerance: 0.150 MeV

			PEAR	AREA RE	PORT				
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	Reagent Backgnd	FWHM (keV)		
U-232 U-234 U-235 U-238	T	5.247 4.701 4.372 4.141	292.83 68.00 6.00 52.81	11.46 23.94 86.43 27.32	0.17 0.00 0.00 1.19	0.00E+000 0.00E+000 0.00E+000 0.00E+000	7.8 4.0 3.0 3.0		

T = Tracer Peak used for Effective Efficiency

NUCLIDE ANALYSIS RESULTS

Nuclide	Id	Energy	Activity	MDA
	Conf.	(keV)	(pCi/gram)	(pCi/gram)
U-232	0.979	5302.50*	5.04E+000 +/- 6.20E-001	7.18E-002 +/- 8.84E-003
U-234	0.974	4761.50*	1.17E+000 +/- 3.15E-001	1.03E-001 +/- 1.27E-002
U-235	0.999	4385.50*	1.27E-001 +/- 1.11E-001	1.27E-001 +/- 1.57E-002
U-238		4184.40*	9.04E-001 +/- 2.71E-001	1.13E-001 +/- 1.39E-002

Sample Title: 03

Elapsed Live time: 10200 Elapsed Real Time: 10200

Channel				_				
1:	0	0	0	1	oʻ	o ˈ	o'	o'
9:	Ö	Ö	Ö	0	Ō	0	0	0
17:	Ö	Ö	Ö	Ö	0	0	0	0
25:	ő	Ö	Ō	1	0	0	0	0
33:	Ö	Ö	Ō	0	0	0	0	0
41:	Ö	Ö	0	0	0	0	0	0
49:	Ô	0	0	0	0	0	0	0
57:	0	1 .	0	0	0	0	0	0
65:	0	0	0	0	0	0	0	0
73:	0	0	0	0	0	0	0	0
81:	0	0	0	0	0	0	0	0
89:	0	0	0	0	0	0	0	0
97:	0	0	0	0	0	0	0	0
105:	0	0	0	0	0	0	0	0
113:	0	0	0	0	0	0	0	0
121:	0	0	0	0	0	0	0	0
129:	0	0	0	0	0	0	0	0
137:	0	0	0	0	0	0	0	0
145:	0	0	0	0	0	0	0	0
153:	0	0	0	0	1	1	0	0
161:	0	0	0	0	0	0	0	0
169:	0	1	1	0	0	0	0	0 0
177:	1	1	0	0	0	0	0	1
185:	0	0	0	0	0	0	0	1
193:	1	0	0	0	0 1	1	0	0
201:	1	0	0	0 1	1	2	1	2
209:	0	0	1 0	1	0	0	<u> </u>	1
217:	1	1	0	0	0	1	0	1
225:	0	1 1	1	1	0	i	1	2
233:	2 1	3	0	1	2	1	Ō	5
241:	0	3	0	0	0	ī	í	Ō
249: 257:	0	0	1	0	1	Ō	ō	1
265:	0	1	0	Ö	ō	1	Ō	0
273:	Ö	0	ő	Õ	Ö	ō	0	0
281:	Ö	Ö	0	Ö	Ō	Ō	0	1
289:	Ö	Ö	Ö	0		0	0	0
297:	Ö	Ö	Ō	0	0 2 0	0	0	0
305:	Ö	Ö	Ö	0	0	0 -	0	0
313:	Ö	0	0 0	0 0	0	1	0	1
321:	Ō	0	0	0	0	0	0	0
329:	Ö	0	0	0 0 0	0	0	0	0 0 1 0 0 0
337:	Ō	1	0	0	0	0	0	0
345:	0	0	0	0	0	0	0	0
353:	0	0	0	0	0	0	1	0
361:	0	0	0	0	0	0	1	0

Channel	Data Rep	ort		4/11/201	6 2:25	:40 PM		Page	2
369:	0	0	0	0	0	0	1	0	
	Sample	Title:	03						
Channel	 -	_ 			-	_			
377:	0	0 '	o '	o'	o ˈ	o '	o [']	o `	
385:	1	0	Ö	ĺ	1	3	2	0	
393:	2	0	Ö	ī	ō	0	1	0	
	0	1	1	2	ĺ	Ō	2	1	
401:		0	0	0	0	2	2	1	
409:	0		3	0	1	Õ	3	ī	
417:	1	1	2	2	1	4	1	2	
425:	1	2			1	3	1	2	
433:	1	1	0	1		0	1	1	
441:	1	0	2	2	0	0	0	0	
449:	1	1	0	0	0		0	0	
457:	0	0	0	0	0	0		. 0	
465:	0	. 0	0	1	0	0	0		
473:	0	0	0	0	0	0	0	0	
481:	0	0	0	0	0	0	0	1	
489:	1	0	0	0	0	0	0	1	
497:	2	0	0	0	0	0	0	0	
505:	0	0	1	0	1	0	0	0	
513:	0	0	0	0	0	0	1	0	
521:	0	0	0	0	0	0	0	0	
529:	1	0	0	1	1	0	0	0	
537:	0	1	1	0	1	3	1	0	
545:	0	1	0	0	0	0	0	1	
5 53:	0	0	1	0	0	1	1	3	
561:	0	0	1	1	1	3	3	0	
569:	1	2	3	1	4	2	2	4	
577 :	4	0	2	0	5	3	1	1	
585:	0	7	5	3	4	8	10	2	
593:	5	2	7	5	7	5	10	7	
601:	5	3	4	6	6	5	11	9	
609:	4	6	5	4	6	8	4	7	
617:	8	8	7	9	8	5	5	4	
625:	8 3	6	3	3	6	0	1	1	
633:	1	1	1	0	1	0	0	0	
641:	0	0	0	0	0	0	0	0	
649:	0	0	0	0	0	1	0	0	
657:	1	0	0	0	0	0	0	0	
665:	0	0	0	0	0	0	1	0	
673:	0	1	0	0	0	0	0	0	
681:	0	0	0	1	0	0	0	0	
689:	0	0	0	0	0	0	0	0	
697:	0	0	0	0	0	0	0	0	
705:	0	0	0	0	0	0	0	0	
713:	0	0	1	0	0	0	0	0	
721:	0	0	0	0	0	0	0	0	
729:	0	0	0	0	0	0	0	0	
737:	Ō	0	0	0	0	0	0	0	
745:	Ö	Ō	0	0	0	0	0	0	
753:	ő	Ö	0	0	0	0	0	0	
761:	ŏ	Ö	Ō	1	0	0	0	0	
769:	Ō	Ö	Ō	0	0	. 0	0	0	þ
777:	Ö	Ō	Ō	0	0	0	0	0	
785:	0	Ö	0	Ō	0	0	0	0	
793:	Ö	0	Ō	Ō	0	0	0	0)
,,,,,,	Ŭ	J	J	-					

Channel Dat	a Repor	rt		4/11/2016	2:25:4	10 PM		Page 3
801:	0	0	0	0	1	0	0	0
Sa	mple Ti	tle:	03					
Channel	0	 0	 0		0	- -	 0	0
817:	0	0	0	0	0	0	0	0
825:	0	0	0	0	0	0	0	0
833:	0	0	0	. 0	0	0	0	0 0
841:	0	0	0	0	0 0	0	0	0
849:	0	0	0	0	0	0	0	ő
857:	0	0 0	0	0	0	0	0	Ö
865:	0 0	0	0	0	0	Ö	Ö	Ö
873: 881:	0	0	0	0	0	Õ	Ö	Ō
889:	0	0	0	ŏ	Ö	Ö	Ö	0
897:	0	0	0	ő	Ö	Ō	0	0
905:	0	Ö	0	Ö	0	0	0	0
913:	Ŏ	Ō	Ō	0	0	0	0	0
921:	Ō	0	0	0	0	0	0	0
929:	Ō	0	0	0	0	0	0	0
937:	0	0	0	0	0	0	0	0
945:	0	0	0	0	0	0	0	0
953:	0	0	0	0	0	0	0	0
961:	0	0	0	0	1	0	0	0
969:	0	0	0	0	0	0	0	0
977:	0	0	0	0	0	0	0	0
985:	0	0	0	0	0	0	0 0	0 0
993:	0	0	0	0	0	0 0	0	0
1001:	0	0	0	0	0 0	0	0	0
1009: 1017:	0 0	. 0	0	0 0	. 0	0	0	ő

Spectrum File:

Batch Identification:

Sample Identification: Sample Geometry:

Procedure Description:

SEDIMENT 2016-03-16A

\\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001482

1603102A-UU

04

Shelf 2 U iso

Detector Name:

Chamber Serial Number:

Detector Serial Number: 3

Reagent Blank:

Alpha_003

Env. Background: System Bkgd 149924 <not performed>

Sample Size:

Sample Date/Time:

Acquisition Date/Time: 3/16/2016 6:26:08 AM Acquisition Date/Time: 4/11/2016 11:31:58 AM Acquisition Live Time: 170.0 minutes

Acquisition Real Time:

9.960E-001 +/- 0.000E+000 gram

3/16/2016 6:26:08 AM

170.0 minutes

Tracer Certificate:

Tracer Quantity:

U232_UU-10A 0.605 mL

Effective Efficiency: 0.1836 +/- 0.0107
Counting Efficiency: 0.1612 +/- 0.0029 on 12/11/2015 2:46:09 PM
Chem. Recovery Factor: 1.1386 +/- 0.0695

Peak Match Tolerance:

0.150 MeV

				. -				
			PEAF	C AREA RI				
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	Reagent Backgnd	FWHM (keV)	
U-232 U-234 U-235 U-238	т	5.255 4.714 4.412 4.126	347.83 65.32 5.32 76.83	10.51 24.40 91.11 22.39	0.17 0.68 0.68 0.17	0.00E+000 0.00E+000 0.00E+000 0.00E+000	11.9 8.0 3.0 4.5	

T = Tracer Peak used for Effective Efficiency

NUCLIDE ANALYSIS RESULTS

Nuclide	Id Conf.	Energy (keV)	Activity (pCi/gram)	MDA (pCi/gram)			
U-232 U-234 U-235	0.984 0.984 0.995	5302.50* 4761.50* 4385.50*	5.05E+000 +/- 5.78E-001 9.48E-001 +/- 2.56E-001 9.53E-002 +/- 8.75E-002	6.06E-002 +/- 6.94E-003 8.19E-002 +/- 9.37E-003 1.01E-001 +/- 1.16E-002 6.03E-002 +/- 6.90E-003			
11_22Q	0 976	4184 40*	1.11E+000 +/- 2.79E-001	6.U3E-UUZ +/- 6.9UE-UU3			

0000148259.CNF

Sample Title: 04

Elapsed Live time: 10202 Elapsed Real Time: 10202

	птарьес	. 1000						
Channel								
1:	10202	10202	0	0	0	0	0	0
9:	0	0	0	0	0	0	0	0
17:	0	0	0	0	0	0	0	0
25:	0	0	0	0	0	0	0	0
33:	0	0	0	0	0	0	0	0
41:	0	0	0	0	0	0	0	0
49:	0	0	0	0	0	0	0	0
57:	0	0	0	0	0	0	0	0
65:	0	0	0	0	0	0	0	0
73:	0	0	0	0	0	0	0	0
81:	0	0	0	0	0	0	0	0
89:	0	1	0	0	0	0	0	0
97:	0	0	0	0	0	0	0	0
105:	0	0	0	0	0	0	0	0
113:	0	0	0	0	0	0	0	0
121:	0	0	0	0	0	0	0	0
129:	0	0	0	0	0	0	0	0
137:	0	0	0	0	0	0	1	0
145:	0	0	0	0	0	0	1	0
153:	0	0	1	0	0	0	0	0
161:	1	0	0	0	0	0	1	0
169:	0	0	0	1	0	1	0	0
177:	0	0	0	0	0	2	1	1
185:	1	0	0	0	2	0	1	1
193:	2	1	1	3	1	0	1	0
201:	1	0	0	0	1	3	0	3 1
209:	0	1	1	2	2	0	0	3
217:	2	3	1	3	0	4	2	2
225:	2	2	3	1	1	0	3 0	0
233:	2	1.	0	0	1	3	0	0
241:	1	1	1	0	0	0		0
249:	0	0	0	0	0	0	0 0	1
257:	0	0	0	0	0	0	1	Ō
265:	0	0	0	0	0	0	0	0
273:	0	0	0	0	0	0	0	0
281:	0	0	0	0	0	0	0	0
289:	0	0	0 0	1 0	0	0 1	0	0
297:	0	0	0	0	0 0	0	0	0
305:	1	1	0	0	0	0	0	0
313:	0	0	0	0	0	0	0	n
321:	1	0	0 0 0	U 1	0	0	0	0
329:	0	0	0	T	0	Ö	Ö	0
337:	0	0	0	1	0	1	0	0 0 0 0 0
345:	0	1	0 0	± 1	0	0	0	Ô
353:	1	0 0	0	0 0 1 0 1 1	0	0	0	Õ
361:	1	U	U	U	U	J	·	

Channel I	Data Repor	t '	4	/11/2016	2:25:5	59 PM		Page 2
369:	0	1	1	0	0	0	0	1
	Sample Ti	tle:	04					
Channel		<u>-</u>	-			- -		0
377:	1	0	0 1	0 0	0 0	0 2	0 3	0
385:	0	1 0	0	2	0	0	0	ĭ
393:	2		3	0	1	2	2	2
401:	0	2 1	3 4	3	2	3	1	4
409:	1 1	0	2	0	2	0	1	2
417:	1 1	4	1	2	0	Ö	Ō	1
425:	2	0	0	0	0	í	Õ	0
433: 441:	0	0	0	0	0	Ō	Ő	Ö
441: 449:	1	0	0	0	0	Ö	Õ	Ö
449: 457:	0	0	0	0	0	Ö	Ö	Ō
457: 465:	0	0	0	Ö	0	ĺ	Ö	ĺ
405: 473:	0	0	0	Ö	Ö	Ō	Ö	0
4/3: 481:	0	0	0	ő	0	Ö	Ö	Ō
489:	0	0	0	Ö	0	Ö	Ō	0
409:	. 0	0	1	Ö	Ö	Ö	Ö	0
505:	0	0	0	Ö	Ō	Ō	0	1
513:	0	Ö	Ö	1	Ö	1	0	1
521:	Ö	1	ĺ	0	1	0	0	1
529:	Ö	1	Ō	Ö	2	0	1	1
537:	1	Ō	Ŏ	Ō	0	0	0	0
545:	Ō	1	ĺ	Ō	2	1	2	0
553:	ĺ	1	0	1	4	1	2	0
561:	0	3	6	4	4	3	2	2
569:	3	8	0	2	4	3	2	5
577:	9	6	5	4	6	5	9	8
585:	7	6	9	10	10	7	3	4
593:	8	8	7	7	10	5	10	7
601:	2	5	10	2	10	8	11	10
609:	4	6 1	9	10	12	6	7	4
617:	1	1	0	2	0	0	0	0
625:	0	0	0	0	0	0	0	0
633:	0	0	0	0	0	0	0	0
641:	0	0	0	0	0	0	0	0
649:	0	0	0	1	0	0	0	0
657:	0	0	0	0	0	0	0 0	0 0
665:	0	0	0	0	0	0 0	1	0
673:	0	0	0	0	0 0	0	0	0
681:	0	0	0	0 0	0	0	0	ő
689:	0	0	0 0	0	0	0	0	Ö
697:	0 0	0 0	0	0	0	0	0	Ö
705: 713:	0	0	0	Ö	Ö	Ö	Ö	Ö
721:	0	0	Ö	Ö	Ő	Ö	0	Ō
721:	0	0	Ö	Ö	Ö	Ō	0	0
737:	ő	Ö	Ŏ	0	1	1	2	0
745:	ŏ	Ö	Ö	Ö	0	0	0	0
753:	Ö	Ö	Ō	0	0	0	0	0
761:	Ö	Ŏ	0	0	0	0	0	0
769:	0	0	0	0	0	0	0	0
777:	Ō	0	0	0	1	0	0	0
785:	0	0	0	0	0	0	0	0
793:	0	0	0	1	0	0	0	0

Channel	Data Repor	t		4/11/2016	2:25:5	59 PM		Page 3
801:	0	0	0	0	0	0	0	0
	Sample Ti	tle:	04					
Channel		-					-	- -
809:	0	0	0	0	0	0	0	0
817:	0	0	0	0	0	0	0	0
825:	0	0	0	0	0	0	0	0
833:	0	0	0	0	0	0	0	0
841:	0	0	0	0	0	0	0	0
849:	0	0	0	0	0	0	0	0
857:	0	0	0	0	0	0	0	0
865:	0	0	0	0	0	0	0	0
873:	0	0	0	0	0	0	0	0
881:	0	0	0	0	0	0	0	0
889:	0	0	0	0	0	0	0	0
897:	0	0	0	0	0 ·	0	0	0
905:	0	0	0	0	0	0	0	0
913:	0	0	0	0	0	0	0	0
921:	0	0	0	0	0	0	0	0
929:	0	0	0	0	. 0	0	0	0
937:	0	0	0	0	0	0	0	0
945:	0	0	0	0	0	0	0	0
953:	0	0	0	0	0	0	0	0
961:	0	0	0	0	0	0	0	0
969:	0	0	0	0	1	0	0	0
977:	0	0	0	0	0	0	0	0
985:	0	0	0	0	0	0	0	0
993:	0	0	0	0	0	0	0	0
1001:	0	0	0	0	0	0	0	0
1009:	0	0	0	0	0	0	0	0
1017:	0	0	0	0	0	O O	0	0

Spectrum File:

SEDIMENT 2016-03-16B

\\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001482

Batch Identification: 1603102A-UU Sample Identification: 05

Sample Geometry:

Shelf 2

Procedure Description: U iso

Detector Name:

Alpha 004

Chamber Serial Number:

Detector Serial Number: 4

Reagent Blank:

Env. Background: System Bkgd 149925 <not performed>

Sample Size:

1.002E+000 +/- 0.000E+000 gram

Sample Date/Time: Sample Date/Time: 3/16/2016 6:26:08 AM
Acquisition Date/Time: 4/11/2016 11:31:59 AM
Acquisition Live Time: 170.0 minutes

3/16/2016 6:26:08 AM

Acquisition Real Time:

170.0 minutes

Tracer Certificate: Tracer Quantity:

U232 UU-10A 0.604 mL

Effective Efficiency: 0.1668 +/- 0.0102 Counting Efficiency: 0.1879 +/- 0.0033 on 12/11/2015 2:46:10 PM Chem. Recovery Factor: 0.8881 +/- 0.0562

Peak Match Tolerance: 0.150 MeV

			PEAF	AREA RI						
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	Reagent Backgnd	FWHM (keV)			
U-232	 Т	5.253	316.00	11.04	0.00	0.00E+000	10.6			
U-234		4.704	58.81	25.86	1.19	0.00E+000	3.4			
Ծ-235		4.433	5.83	82.55	0.17	0.00E+000	2.9			
U-238		4.120	63.00	24.89	0.00	0.00E+000	5.8			

T = Tracer Peak used for Effective Efficiency

 			
 NUCLIDE	ANALYSIS	RESULTS	-

Nuclide	Id	Energy	Activity	MDA
	Conf.	(keV)	(pCi/gram)	(pCi/gram)
U-232	0.983	5302.50*	5.02E+000 +/- 5.99E-001	9.53E-002 +/- 1.14E-002
U-234	0.976	4761.50*	9.34E-001 +/- 2.66E-001	1.05E-001 +/- 1.25E-002
U-235	0.984	4385.50*	1.14E-001 +/- 9.53E-002	8.18E-002 +/- 9.75E-003
U-238	0.971	4184.40*	9.96E-001 +/- 2.75E-001	9.48E-002 +/- 1.13E-002

************** **** SPECTRAL DATA REPORT *****

Sample Title: 05

Elapsed Live time: Elapsed Real Time: 10201 10201

Channel	- 1	1 _	1	1				
1:	10201	10201	0	0	o'	0	0	o '
9:	0	0	Ö	Ō	0	0	0	0
17:	Ő	Ö	1	Ō	0	0	0	0
25:	Ö	ŏ	0	Ō	0	0	0	0
33:	ő	Ö	Ō	Ō	0	0	0	0
41:	Ō	0	0	0	0	0	0	0
49:	Ō	0	0	0	0	0	0	0
5 7:	Ō	0	0	0	0	0	0	0
65:	1	0	0	0	0	0	0	0
73:	0	0	0	0	0	0	0	0
81:	0	0	0	0	0	0	0	0
89:	0	0	1	0	0	0	0	0
97:	0	0	0	0	0	0	0	. 0
105:	0	0	0	0	0	0	0	0
113:	0	0	0	0	0	0	0	0
121:	0	0	0	0	0	0	0	0
129:	0	0	0	0	0	0	0	0
137:	0	0	0	1	0	1	0	0
145:	0	0	0	0	0	. 0	0	0
153:	1	1	0	0	1	0	0	0
161:	0	0	0	0	0	0	0	2
169:	0	0	0	0	0	0	1 0	0
177:	0	0	0	0	1	0		0
185:	2	0	0	0	0	0	1 0	0 0
193:	0	2	1	1	1	1 1		1
201:	1	1	2	2	0	2		1
209:	2	3	0	2	3 0	1		2
217:	0	1	0	1 2	0	2		2
225:	1	1 3	2 1	2	1	0		0
233:	. 2	3 0	0	3	0	0		. 0
241:	0	0	0	0	0	0		Ō
249: 257:	0 0	0	0	0	0	Ö		Ō
257: 265:	0	0	0	1	Ö	ō	-	0
273:	0	0	0	0	0	0		0
281:	0	ő	Ŏ	0	0	0	0	0
289:	Ö	Ö		0	0	0	0	0
297:	0	Ö	1 0	0	0		0	0
305:	Ö	Ō	Ō	0	0	0		0
313:	Ō	Ō	0	0	0	1		
321:	Ö	Ō	0	1	0	0	0	0
329:	Ō	Ō	0	0	1.	0		. 0
337:	1	0	0	0	0	0		0
345:	0	0	0	0	0			0
353:	1	0	0	1	0			
361:	0	0	0	0	0	0	0	0

Channel Data Report 4/11/2016 2:26:16 PM Page 2
369: 0 0 0 0 0 1 1 0

Sample Title: 05

ž	sambre 11	.cre.	, ,					
Channel			. 	. -				<u>-</u>
377:	o ·	0	0	0	2	1	1	0
385:	0	0	1	0	0	1	0	0
393:	1	0	0	0	0	1	0	0
401:	Ō	1	2	1	2	2	1	2
	0	ī	1	2	2	3	1	0
409:			0	4	ĩ	Ö	0	0
417:	3	2			1	2	2	2
425:	2	3	0	1		2	Ō	Õ
433:	2	0	1.	1	0		0	0
441:	0	2	0	0	0	0		
449:	0	0	0	0	0	0	0	0
457:	0	0	0	0	0	0	0	0
465:	0	0	0	0	0	0	0	0
473:	0	0	1	0	0	0	0	0
481:	1	0	0	0	0	0	0	0
489:	ō	Ō	0	0	1	0	0	0
497:	0	. 0	Ö	Ö	0	0	0	0
	0	1	ŏ	ő	Ō	0	0	1
505:		0	Ö	Ö	Ö	Ö	Ô	0
513:	0			0	0	ĺ	Ö	0
521:	0	0	1		0	0	Ö	Ö
529:	2	0	0	0		0	Ö	0
537:	1	0	0	0	0		0	0
545:	0	0	1	0	0	0		0
553:	0	0	1	1	Ō	2	0	
561:	2	0	0	3	1	2	1	2
569:	1	0	1	4	3	2	1	3
577 :	6	5	0	3	5	0	1	4
585:	4	4	3	3	6	5	2	3
593:	8	5	2	3 2	8	5	7	4
601:	7	10	10	9	9	12	6	7
609:	9	9	6	11	5	7	9	8
617:	14	3	12	7	7	5	8	3
625:	2	4	1	2	1	0	0	0
633:	0	1	ō	0	0	0	0	0
641:	0	Ō	Ö	Ö	Ō	0	0	0
	0	0	0	Ŏ	Ö	Ō	0	2
649:				Ö	Ö	Ö	0	0
657:	0	0	0	0	0	Ö	Ö	Ô
665:	0	0	0		0	Ö	Ö	0 0
673:	0	0	0	0		0	0	Ö
681:	0	0	0	0	0		0	0
689:	0	0	0	0	0	0	0	0
697:	0	0	1	0	0	0		1
705:	0	0	0	0	0	0	0	0 0 1 0
713:	0	0	0	0	0	0	0	0
721:	0	0	0	0	0	0	1	0 0
729:	0	0	0	0	0	0	0	Ü
737:	0	0	0	0	0	0	0	0
745:	0	0	0	0	0	0	0	0
753:	Ö	0	0	0	0	0	0	0
761:	Ö	Ö	Ö	0	0	0	0	0 0
769:	0	Ö	Ö	Ö	0	0	0	0
103; 777.	0	0	Ö	Ö	Ö	Ō	0	0
777:		0	0	ő	Ö	Ö	0	0
785:	0	0	0	0	0	ŏ	Ö	0
793:	0	U	U	J	Ŭ	•	-	

Channel 1	Data Repor	t	4	1/11/2016	2:26:	l6 PM		Page 3	
801:	0	0	0	0	0	0	0	0	
	Sample Ti	tle:	05						
Channel 809: 817: 825: 833: 841: 849: 857: 865: 873: 881: 889: 905: 913: 921: 929: 937: 945:	Sample T10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						 1 0 0 0 0 0 0 0 0 0 0 0		
953: 961: 969: 977: 985: 993: 1001: 1009:	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	

SEDIMENT 2016-03-16B DUP

Spectrum File:

\\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001482

1603102A-UU Batch Identification:

Sample Identification: Sample Geometry:

06 Shelf 2

Procedure Description:

U iso

Detector Name:

Alpha 010

Chamber Serial Number:

Detector Serial Number: 10 Env. Background:

System Bkgd 149926

Reagent Blank:

<not performed>

Sample Size:

1.005E+000 +/- 0.000E+000 gram

Sample Date/Time: 3/16/2016 6:26:08 AM
Acquisition Date/Time: 4/11/2016 11:31:57 AM
Acquisition Live Time: 170.0 minutes

Acquisition Real Time:

170.0 minutes

Tracer Certificate: Tracer Quantity:

U232 UU-10A 0.602 mL

Chem. Recovery Factor:

Effective Efficiency: 0.1536 +/- 0.0097 Counting Efficiency: 0.1895 +/- 0.0033 on 12/11/2015 2:46:10 PM Chem. Recovery Factor: 0.8102 +/- 0.0532

Peak Match Tolerance:

0.150 MeV

			PEAR	PEAK AREA REPORT							
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	Reagent Backgnd	FWHM (keV)				
 	 T	5.251	289.62	11.57	2.38	0.00E+000	4.7				
U-234	_	4.716	53.96	27.27	2.04	0.00E+000	3.4				
บ-235		4.409	7.32	76.28	0.68	0.00E+000	2.9				
U-238		4.117	39.66	31.28	0.34	0.00E+000	3.6				

T = Tracer Peak used for Effective Efficiency

______ NUCLIDE ANALYSIS RESULTS

Nuclide	Id Conf.	Energy (keV)	Activity (pCi/gram)	MDA (pCi/gram)
U-232 U-234	0.981	5302.50* 4761.50*	4.99E+000 +/- 6.19E-001 9.29E-001 +/- 2.78E-001 1.55E-001 +/- 1.20E-001	1.41E-001 +/- 1.75E-002 1.34E-001 +/- 1.66E-002 1.20E-001 +/- 1.49E-002
U-235 U-238	0.996 0.969	4385.50* 4184.40*	6.80E-001 +/- 1.20E-001	8.19E-002 +/- 1.02E-002

Sample Title: 06

Elapsed Live time: Elapsed Real Time: 10201 10201

~1	1	ı	1_	1	1			
Channel	10001	10201	0	0	0	0	' 0	' o'
1:	10201	10201 0	0	0	0	0	Ō	0
9:	0		0	0	0	0	Ō	Ō
17:	0	0		0	0	0	ő	Ō
25:	0	- 0	0		0	0	0	ő
33:	0	0	0	0		0	0	0
41:	0	0	0	0	0	0	0	0
49:	0	0	0	0	0		0	0
57:	0	0	0	0	0	0		0
65:	0	0	0	0	0	0	0	
73:	0	0	0	0	0	0	0	0
81:	0	0	0	0	0	0		0
89:	0	0	0	0	0	0	1	0
97:	0	0	0	0	0	0		0
105:	0	0	0	0	0	0		0
113:	0	0	0	0	0	0		0
121:	0	0	0	0	0	0		0
129:	0	0	0	0	0	0		
137:	0	0	1	0	0	0	0	
145:	1	0	0	0	0	0	1	0
153:	0	0	0	0	0	0	0	0
161:	Ō	Ō	0	0	0	0	0	0
169:	1	Ö	1	0	0	0	0	0
177:	0	Ö	ō	0	0	0	1	. 0
185:	1	1	2	Ö	0	1		0
193:	0	2	ō	2	0	C		2
201:	0	0	ő	2	1	ī		
201:	2	1	ĺ	ō	0	Ċ		
	0	0	Ō	ĺ	2	1		
217:	1	0	1	0	0	1		
225:	0	0	Ō	1	1	C		
233:			0	1	0	· 0		
241:	1	0	0	0	0	C		
249:	0	0	0	0	0	(_	
257:	0	0		2	0	(_
265:	0	1	0	0	1		•	
273:	0	0	0		0			
281:	0	0	0	0			•	
289:	0	0	0	0	0			
297:	0	0	0	0 1	0			
305:	0	1	0	Τ.	0			, 1
313:	0	0	0	1	0			, ,
321:	0	0	1 0 0	0	0			
329:	1	0	0	0	0) 0
337:	0	0	0	0	O			0
345:	0	0	0	0	C	_		0
353:	0	1	0	0 2	1 1	. (0 0 0 1 0 1
361:	0	0	0	2	1		1 :	1

Channel :	Data Report	t	4	/11/2016	2:26:3	33 PM		Page	2
369:	0	2	0	0	0	0	0	0	
	Sample Ti	tle: 0	6						
	1	ı	1	1	İ			1	
Channel		-				1	0	1	
377:	0	0	0	0	1 0	0	0	Ō	
385:	1	1	0	0		1	1	1	
393:	1	1	0	0	1		0	i	
401:	2	1	0	1	1	0	=		
409:	4	0	1	0	0	0	0	4 0	
417:	0	2	2	2	1	2	2	1	
425:	0	1	2	1	2	4	1	$\overset{\mathtt{L}}{1}$	
433:	1	0	0	0	0	0	0		
441:	2	0	0	0	0	0	0	0	
449:	0	0	1	0	0	1	0	0	
457:	0	0	1	0	0	0	0	0	
465:	0	0	0	0	0	0	0	0	
473:	0	1	0	0	0	0	0	0	
481:	0	1	0	0	0	0	0	. 0	
489:	0	0	0	1	0	0	0	0	
497:	0	0	0	0	0	0	0	0	
505:	0	1	0	0	0	1	0	0	
513:	0	0	0	0	0	0	0	0	
521:	1	0	0	0	0	0	0	0	
529:	0	0	0	0	0	1	1	0	
537:	0	0	0	2	1	1	2	0	
545:	0	2	0	1	0	0	0	1	
553:	2	0	0	0	2	1	0	0	
561:	1	1	2	2	2	2	3	2	
569:	1	2	3	2	2	2	0	4	
577 :	4	6	5	1	3	3	5	1	
585:	4	2	5	4	5	5	7	0	
593:	4	5	8	8	8	3	8	7	
601:	2	7	8	9	5	9	7	5	
609:	14	8	2	4	15	7	4	10	
617:	5	6	7	3	5	4	2	3	
625:	1	3	0	1	0	0	0	0	
633:	0	0	0	0	0	0	0	. 0	
641:	0	0	0	1	1	0	0	0	
649:	0	0	0	0	0	0	0	0	
657:	1	0	0	0	0	0	0	0	
665:	0	0	0	0	0	0	0	0	
673:	0	0	0	0	0	1	0	0	
681:	0	0	1	0	0	0	0	0	
689:	0	10	0	0	0	0	0	0 0	
697:	0	0	0	0	0	0	0 0	0	
705:	0	0	0	0	0	0	0	0	
713:	0	0	0	0	0	0	0	0	
721:	0	0	0	0	0	0	0	0	
729:	0	0	0	0	0	0 0	0	0	
737:	0	0	0	0	0	0	0	0	
745:	0	0	0	0	0	0	0	0	
753:	0	0	0	0	0	0	0	0	
761:	0	0	0	0	0	0	0	0	
769:	0	0	1	0	0	0	0	0	
777:	0	0	0	0	0		0	0	
785:	0	0	0	0	0	0 0	0	0	
793:	0	0	0	0	0	U	U	U	

Channel	Data Repor	t	- 4	4/11/2016	2:26:3	33 PM		Page 3
801:	0	0	0	.0	0	0	0	0
	Sample Ti	tle:	06					
Channel			-					
809:	0	0	0	0	0	0	0	0
817:	0	0	1	0	0	0	0	0
825:	0	0	0	0	0	0	0	0
833:	0	0	0	0	0	0	0	0
841:	0	0	0	0	0	0	0	0
849:	0	0	0	0	0	0	0	0
857:	0	0	0	0	0	0	0	0
865:	0	0	0	0	0	0	0	0
873:	0	0	0	0	0	0	0	0
881:	0	0	0	0	0	0	0	0
889:	0	0	0	0	0	0	0	0
897:	0	0	0	0	0	0	0	0
905:	0	0	0	0	0	0	0	0
913:	0	0	0	0	0	0	0	0
921:	0	0	0	0	0	0	0	0
929:	0	0	0	0	0	0	0	0
937:	0	0	0	0	1	0	0	0
945:	0	0	0	0	0	0	0	0
953 :	0	0	0	0	0	0	0	0
961:	. 0	1	0	0	0	0	0	0
969:	0	0	0	0	0	0	0	0
977:	0	0	0	0	0	0	0	1
985:	0	0	0	0	0	0	0	0
993:	0	0	0	0	0	0	0	Ó
1001:	0	0	0	0	0	0	0	0
1009:	Ō	0	0	0	0	0	0	0
1017:	0	Ō	0	0	0	0	0 .	0

QA SUMMARY REPORT Review Of QA Results - Pulser Check

Date : 4/11/2016 Time : 5:38:58 AM

CHAMBER	DEVICE	PARAMETER	FLAG	DATE
Alpha 001	21f	ALL ·	Not Done	
Alpha 002	21f	ALL	Not Done	
Alpha 003	21f	ALL	Passed	4/11/2016 5:09:37 AM
Alpha 004	21f	ALL	Passed	4/11/2016 5:09:38 AM
Alpha 005	21f	ALL	Not Done	
Alpha 006	21f	ALL	Not Done	
Alpha 007	21f	ALL	Not Done	
Alpha 008	21f	ALL	Not Done	
Alpha 009	21f	ALL	Not Done	
Alpha 010	21f	ALL	Passed	4/11/2016 5:09:39 AM
Alpha 011	21f	ALL	Passed	4/11/2016 5:09:40 AM
Alpha 012	21f	ALL	Passed	4/11/2016 5:09:40 AM
Alpha 013	21f	ALL	Not Done	
Alpha 014	21f	ALL	Passed	4/11/2016 5:09:41 AM
Alpha 015	21f	ALL	Passed	4/11/2016 5:09:42 AM
Alpha 016	21f	ALL	Not Done	
Alpha 033	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:09:43 AM
Alpha 034	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:09:45 AM
Alpha 035	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:09:47 AM
Alpha 036	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:09:48 AM
Alpha 037	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:09:51 AM
Alpha 038	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:09:53 AM
Alpha 039	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:09:55 AM
Alpha 040	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:09:57 AM
Alpha 041	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:09:59 AM
Alpha 042	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:10:02 AM
Alpha 043	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:10:04 AM
Alpha 044	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:10:07 AM
Alpha 045	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:10:09 AM
Alpha 046	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:10:12 AM
Alpha 047	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:10:15 AM
Alpha 048	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:10:18 AM
Alpha 049	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:10:20 AM
Alpha 050	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:10:23 AM
Alpha 051	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:55:08 AM
Alpha 052	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:10:26 AM
Alpha 053	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:10:28 AM
Alpha 054	Alpha Analyst100DC	ΔΙΤ	Passed	4/11/2016 5:10:31 AM
Alpha 055	Alpha Analyst100DC	Peak FWHM Peak FWHM	Action	4/11/2016 5:10:33 AM
Alpha 056	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:10:36 AM
Alpha 057	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:10:39 AM
Alpha_058	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:10:42 AM

Review of QA Results - Pulser Check

Page 2 of 2

4/11/2016 5:38:58 AM

CHAMBER	DEVICE	PARAMETER	FLAG	DATE
Alpha 059	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:10:45 AM
Alpha 060	Alpha Analyst100DC	ALL	Passed	4/11/2016 5:10:48 AM

APPROVED BY:	
APPROVAL DATE:	4111116

Nuclide Library Title: Uranium

Nuclide Library Description: U-232,-234,-235,-238

Nuclide	Half-Life	Energy	Energy	Yield	Yield
Name	(Seconds)	(keV)	Uncert. (keV)	(%)	Uncert.(Abs.+-)
U-232	2.174E+009	5302.500*	0.000	99.8000	0.0000
U-234	7.731E+012	4761.500*		99.8000	0.0000
U-235	2.221E+016	4385.500*		80.9000	0.0000
U-238	1.410E+017	4184.400*		100.2300	0.0000

^{* =} key line

TOTALS:

⁴ Nuclides

⁴ Energy Lines

SECTION IX ANALYTICAL DATA (ISOTOPIC THORIUM)

Work Order	16-03102
Analysis Code	ThISO
Run	1
Date Received	3/21/2016
Lab Deadline	4/12/2016
Client	Auxier & Associates, Inc
Project	WESTLAKE NCC
Report Level	4
Activity Units	pCi
Aliquot Units	g
Matrix	so
Method	EML Th-01 Modified
Instrument Type	Alpha Spectroscopy
Radiometric Tracer	Th-229
Radiometric Sol#	Th-18a
Tracer Act (dpm/g)	22.46
Carrier	
Carrier Conc (mg/ml)	

Internal Fraction	Sample Desc	Client ID	Login CPM	Sample Date	Sample Aliquot
01	LCS	LCS		03/22/16 00:00	1.0000E+00
02	MBL	BLANK		03/22/16 00:00	1.0000E+00
03	DUP	SEDIMENT 2016-03-16A	36	03/16/16 13:35	9.9700E-01
04	DO	SEDIMENT 2016-03-16A	36	03/16/16 13:35	1.0102E+00
05	TRG	SEDIMENT 2016-03-16B	38	03/16/16 13:55	1.0085E+00
06	TRG	SEDIMENT 2016-03-16B DUP	34	03/16/16 13:55	1.0126E+00
		· · · · · · ·			

^{*} SAF1 is used for Gross Alpha and all other radionuclides. SAF2 is used for Gross Beta only. ^ Indicates estimated SAF value. ** Actual mass exceeded the calibration curve range. Results should be qualified as appropriate.

Internal Fraction	Sample Desc	Tracer Aliquot (g)	Tracer Total ACT (dpm)	Radiometric Tracer (pCi)	Radiometric % Rec	Grav Carrier Added (ml)	Grav Filter Tare (g)	Grav Filter Final (g)	Grav Filter Net (g)	Grav % Rec	Mean % Rec	SAF 1*	SAF 2*
01	LCS	0.4655	10.5		0.00								
02	MBL	0.2336	5.2		0.00								
03	DUP	0.2330	5.2		0.00								
04	DO	0.2327	5.2		0.00		1.						
05	TRG	0.2328	5.2		0.00								
06	TRG	0.2334	5.2		0.00								
													-
	_												
· · · · · · · · · · · · · · · · · · ·													

^{*} SAF1 is used for Gross Alpha and all other radionuclides. SAF2 is used for Gross Beta only. ^ Indicates estimated SAF value. ** Actual mass exceeded the calibration curve range. Results should be qualified as appropriate.

Internal Fraction	Sample Desc	Rough Prep Date	Rough Prep By	Prep Date	Prep By	Sep t0 Date/Time	Sep t0 By	Sep t1 Date/Time	Sep t1 By
01	LCS			04/05/16 11:21	JWOLFE				
02	MBL			04/05/16 11:21	JWOLFE				
03	DUP			04/05/16 11:21	JWOLFE				
04	DO	03/23/16 07:28	KSALLINGS	04/05/16 11:21	JWOLFE				
05	TRG	03/23/16 07:28	KSALLINGS	04/05/16 11:21	JWOLFE				
06	TRG	03/23/16 07:28	KSALLINGS	04/05/16 11:21	JWOLFE				
:									
								1	
		<u></u>							

^{*} SAF1 is used for Gross Alpha and all other radionuclides. SAF2 is used for Gross Beta only. ^ Indicates estimated SAF value. ** Actual mass exceeded the calibration curve range. Results should be qualified as appropriate.

Work Order: 16-03102-ThISO-1

Printed: 4/11/2016 8:03 AM

Page 1 of 3

(3
Run	_
Analysis Code	ThISO
Eberline Analytical Work Order	16-03102
Client	Auxier & Associates, Inc.

Nuclide	Sample Desc	Client Identification	Activity Units	Results	Error Estimate	MDA	LCS Known	LCS %R	LCS Flag	RPD Flag	MDA Flag	Blank Flag
TH-228	LCS	LCS	pCi/g	5.32E+00	8.03E-01	7.41E-02	4.79E+00	111.25	ок		ок	
TH-228	MBL	BLANK	pCi/g	-1.46E-02	2.64E-02	8.07E-02					ок	ок
TH-228	DUP	SEDIMENT 2016-03-16A	pCi/g	1.06E+00	3.15E-01	1.25E-01				NA	ок	
TH-228	DO	SEDIMENT 2016-03-16A	pCi/g	6.77E-01	2.10E-01	8.84E-02					ок	
TH-228	TRG	SEDIMENT 2016-03-16B	pCi/g	1.08E+00	3.13E-01	8.68E-02					ок	
TH-228	TRG	SEDIMENT 2016-03-16B DUP	pCi/g	6.18E-01	2.29E-01	1.48E-01					ок	
					-							
	1											
								-				
				-								
	TH-228 TH-228 TH-228 TH-228 TH-228 TH-228	TH-228 LCS TH-228 MBL TH-228 DUP TH-228 TRG TH-228 TRG	TH-228 LCS LCS TH-228 MBL BLANK TH-228 DUP SEDIMENT 2016-03-16A TH-228 DO SEDIMENT 2016-03-16A TH-228 TRG SEDIMENT 2016-03-16B TH-228 TRG SEDIMENT 2016-03-16B DUP	TH-228	TH-228	TH-228 LCS LCS pCi/g 5.32E+00 8.03E-01 TH-228 MBL BLANK pCi/g -1.46E-02 2.64E-02 TH-228 DUP SEDIMENT 2016-03-16A pCi/g 1.06E+00 3.15E-01 TH-228 DO SEDIMENT 2016-03-16A pCi/g 6.77E-01 2.10E-01 TH-228 TRG SEDIMENT 2016-03-16B pCi/g 1.08E+00 3.13E-01 TH-228 TRG SEDIMENT 2016-03-16B DUP pCi/g 6.18E-01 2.29E-01	TH-228 LCS LCS pCi/g 5.32E+00 8.03E-01 7.41E-02 TH-228 MBL BLANK pCi/g -1.46E-02 2.64E-02 8.07E-02 TH-228 DUP SEDIMENT 2016-03-16A pCi/g 1.06E+00 3.15E-01 1.25E-01 TH-228 DO SEDIMENT 2016-03-16A pCi/g 6.77E-01 2.10E-01 8.84E-02 TH-228 TRG SEDIMENT 2016-03-16B pCi/g 1.08E+00 3.13E-01 8.68E-02 TH-228 TRG SEDIMENT 2016-03-16B DUP pCi/g 6.18E-01 2.29E-01 1.48E-01	Nuclide	TH-228	Nuclide	Nuclide Desc Identification Units Results Error Estimate Nuclide Nucli	Nuclide Desc Identification Units Results Error Estimate MUA Known 1/6R Flag Flag Flag Flag TH-228 LCS LCS pCi/g 5.32E+00 8.03E-01 7.41E-02 4.79E+00 111.25 OK OK

Preliminary Data Report & Analytical Calculations Work Order: 16-03102-ThISO-1

Printed: 4/11/2016 8:03 AM

Page 2 of 3

Client	Eberline Analytical Work Order	Analysis Code	Run	(
Auxier & Associates, Inc.	16-03102	ThISO	~	

Lab Fraction	Nuclide	Sample Desc	Sample Date	Sample Aliquot	Radiometric % Rec	Grav % Rec	Mean % Rec	SAF	Sep t0 Date/Time	Sep t1 Date/Time
01	TH-228	LCS	03/22/16 00:00	1.00E+00	120.93	0.00	0.00			
02	TH-228	MBL	03/22/16 00:00	1.00E+00	137.36	0.00	0.00			
03	TH-228	DUP	03/16/16 13:35	9.97E-01	92.84	0.00	0.00			
04	TH-228	DO	03/16/16 13:35	1.01E+00	131.36	0.00	0.00			
05	TH-228	TRG	03/16/16 13:55	1.01E+00	109.29	0.00	0.00			
06	TH-228	TRG	03/16/16 13:55	1.01E+00	91.89	0.00	0.00			
										-

Work Order: 16-03102-ThISO-1

	Lab Fraction	Nuclide	Sample Desc	Counting Date/Time	Halflife (days)	Detect	Carrier	Count Time	Counts	Bkg CPM	Eff
	01	TH-228	LCS	04/08/16 14:44		A_Spec	Alpha_034	170	4.30 E+02	5.00 E-03	17.7
	02	TH-228	MBL	04/08/16 14:44		A_Spec	Alpha_035	170	-1.19 E+00	7.00 E-03	15.8
	03	TH-228	DUP	04/08/16 14:44		A_Spec	Alpha_036	170	6.78 E+01	1.30 E-02	18.7
	04	TH-228	DO	04/08/16 14:44		A_Spec	Alpha_037	170	5.45 E+01	9.00 E-03	16.5
	05	TH-228	TRG	04/08/16 14:45		A_Spec	Alpha_038	170	7.03 E+01	4.00 E-03	16
	06	TH-228	TRG	04/08/16 14:45		A_Spec	Alpha_039	170	3.94 E+01	2.10 E-02	18.6
		<u></u>									
						1					
	<u> </u>		-		. –						
Ī	L	ļ	. 1			1		1			1

Run

Analysis Code

Eberline Analytical Work Order

ThISO

16-03102

Associates, Inc.

Auxier &

Preliminary Data Report & Analytical Calculations Work Order: 16-03102-ThISO-1

Printed: 4/11/2016 8:03 AM

Page 1 of 3

Analysis Code Run	Thiso 1
Eberline Analytical Work Order	16-03102
Client	Auxier & Associates, Inc.

Lab Fraction	Nuclide	Sample Desc	Client Identification	Activity Units	Results	Error Estimate	MDA	LCS Known	LCS %R	LCS Flag	RPD Flag	MDA Flag	Blank Flag
01	TH-230	LCS	LCS	pCî/g	6.13E+00	9.00E-01	5.92E-02	5.34E+00	114.86	ок		OK	
02	TH-230	MBL	BLANK	pCi/g	1.65E-01	9.38E-02	6.44E-02					ОК	ок
03	TH-230	DUP	SEDIMENT 2016-03-16A	pCi/g	8.36E+00	1.58E+00	9.66E-02				ок	ок	
04	TH-230	DO	SEDIMENT 2016-03-16A	pCi/g	6.98E+00	1.22E+00	6.86E-02					ок	
05	TH-230	TRG	SEDIMENT 2016-03-16B	pCi/g	4.53E+00	9.21E-01	8.49E-02					ок	
06	TH-230	TRG	SEDIMENT 2016-03-16B DUP	pCi/g	4.39E+00	9.09E-01	1.13E-01	-				ок	
,,,													
								*					
													}

Preliminary Data Report & Analytical Calculations

Work Order: 16-03102-ThISO-1

Printed: 4/11/2016 8:03 AM

Page 2 of 3

æ	3	Lab Fraction	Nuclide	Sample Desc	Sample Date	Sample Aliquot	Radiometric % Rec	Grav % Rec	Mean % Rec	SAF	Sep t0 Date/Time	Sep t1 Date/Time
	6	01	TH-230	LCS	03/22/16 00:00	1.00E+00	120.93	0.00	0.00			
u		02	TH-230	MBL	03/22/16 00:00	1.00E+00	137.36	0.00	0.00			
Run	7	03	TH-230	DUP	03/16/16 13:35	9.97E-01	92.84	0.00	0.00			
60		04	TH-230	DO	03/16/16 13:35	1.01E+00	131.36	0.00	0.00			
s Cod	SO	05	TH-230	TRG	03/16/16 13:55	1.01E+00	109.29	0.00	0.00			
Analysis Code	ThIS	06	TH-230	TRG	03/16/16 13:55	1.01E+00	91.89	0.00	0.00	i		
₹												
rder												
Eberline Analytical Work Order	6-03102											
lytical	03,											
ne Ana	- 9											
Eberii	~											
	ပ											
	i, Inc.											
	Associates,											
	oci											
Client	Ass											
	⊸ ಶ											
	xier									-		
	Au											
	Auxier											

Run	7
Analysis Code	ThISO
Eberline Analytical Work Order	16-03102
Client	Auxier & Associates, Inc.

Lab Fraction	Nuclide	Sample Desc	Counting Date/Time	Halflife (days)	Detect	Carrier	Count Time	Counts	Bkg CPM	Eff
01	TH-230	LCS	04/08/16 14:44		A_Spec	Alpha_034	170	4.95 E+02	2.00 E-03	17.7
02	TH-230	MBL	04/08/16 14:44		A_Spec	Alpha_035	170	1.35 E+01	3.00 E-03	15.8
03	TH-230	DUP	04/08/16 14:44		A_Spec	Alpha_036	170	5.45 E+02	6.00 E-03	18.7
04	TH-230	DO	04/08/16 14:44		A_Spec	Alpha_037	170	5.74 E+02	4.00 E-03	16.5
05	TH-230	TRG	04/08/16 14:45		A_Spec	Alpha_038	170	3.01 E+02	4.00 E-03	16
06	TH-230	TRG	04/08/16 14:45		A_Spec	Alpha_039	170	2.86 E+02	1.00 E-02	18.6

	<u></u>									
			<u> </u>							

Printed: 4/11/2016 8:03 AM

Page 1 of 3

Run ThISO Analysis Code Eberline Analytical Work Order 16-03102 Auxier & Associates, Inc.

Lab Fraction	Nuclide	Sample Desc	Client Identification	Activity Units	Results	Error Estimate	MDA	LCS Known	LCS %R	LCS Flag	RPD Flag	MDA Flag	Blank Flag
01	TH-232	LCS	LCS	pCi/g	4.78E+00	7.37E-01	5.91E-02	4.79E+00	99.90	ок		ОК	
02	TH-232	MBL	BLANK	pCi/g	-4.16E-03	2.47E-02	5.85E-02					ок	ок
03	TH-232	DUP	SEDIMENT 2016-03-16A	pCi/g	1.09E+00	3.14E-01	9.18E-02				INV	ок	
04	TH-232	DO	SEDIMENT 2016-03-16A	pCi/g	8.19E-01	2.33E-01	6.37E-02					ок	
05	TH-232	TRG	SEDIMENT 2016-03-16B	pCi/g	7.36E-01	2.42E-01	9.01E-02					ок	
06	TH-232	TRG	SEDIMENT 2016-03-16B DUP	pCi/g	8.41E-01	2.69E-01	1.19E-01					ок	
												:	
													_
!													
			`										

Printed: 4/11/2016 8:03 AM

Page 2 of 3

	(
	Run	_
	Analysis Code	Thiso
	Eberline Analytical Work Order	16-03102
a state of the sta	Client	Auxier & Associates, Inc.

Lab Fraction	Nuclide	Sample Desc	Sample Date	Sample Aliquot	Radiometric % Rec	Grav % Rec	Mean % Rec	SAF	Sep t0 Date/Time	Sep t1 Date/Time
01	TH-232	LCS	03/22/16 00:00	1.00E+00	120.93	0.00	0.00		. No.	
02	TH-232	MBL	03/22/16 00:00	1.00E+00	137.36	0.00	0.00	*******		
03	TH-232	DUP	03/16/16 13:35	9.97E-01	92.84	0.00	0.00			
04	TH-232	DO	03/16/16 13:35	1.01E+00	131.36	0.00	0.00			
05	TH-232	TRG	03/16/16 13:55	1.01E+00	109.29	0.00	0.00	_		
06	TH-232	TRG	03/16/16 13:55	1.01E+00	91.89	0.00	0.00			

Printed: 4/11/2016 8:03 AM Page 3 of 3

Work Order: 16-03102-ThISO-1

3	Lab Fraction	Nuclide	Sample Desc	Counting Date/Time	Halflife (days)	Detect	Carrier	Count Time	Counts	Bkg CPM	Eff
3	01	TH-232	LCS	04/08/16 14:44		A_Spec	Alpha_034	170	3.87 E+02	2.00 E-03	17.7
	02	TH-232	MBL	04/08/16 14:44		A_Spec	Alpha_035	170	-3.40 E-01	2.00 E-03	15.8
	03	TH-232	DUP	04/08/16 14:44		A_Spec	Alpha_036	170	7.10 E+01	0.00 E+00	18.7
	04	TH-232	DO	04/08/16 14:44		A_Spec	Alpha_037	170	6.75 E+01	3.00 E-03	16.5
Thiso	05	TH-232	TRG	04/08/16 14:45		A_Spec	Alpha_038	170	4.90 E+01	0.00 E+00	16
<u> </u>	06	TH-232	TRG	04/08/16 14:45		A_Spec	Alpha_039	170	5.50 E+01	1.20 E-02	18.6
16-03102											
33											
)-9											
7											
ن											
Auxier & Associates, Inc.											
ates											
OC.											
Ass											
જ											
Ķier											
Au;											
	L					<u> </u>	1		1		<u> </u>

Analysis Code

Work Order: 16-03102-ThISO-1

Printed: 4/11/2016 8:03 AM

Page 1 of 3

•	
Run	~
Analysis Code	ThISO
Eberline Analytical Work Order	16-03102
Client	Auxier & Associates, Inc.

Lab Fraction	Nuclide	Sample Desc	Client Identification	Activity Units	Results	Error Estimate	MDA	LCS Known	LCS %R	LCS Flag	RPD Flag	MDA Flag	Blank Flag
					4.55.04	0.045.00	7 FOE 00					ОК	ок
02	TH-227	MBL	BLANK	pCi/g	1.15E-01	8.04E-02	7.52E-02						UK -
03	TH-227	DUP	SEDIMENT 2016-03-16A	pCi/g	3.11E-01	1.55E-01	1.26E-01				NA	ок	
04	TH-227	DO	SEDIMENT 2016-03-16A	pCi/g	1.95E-01	1.03E-01	5.96E-02					OK	
05	TH-227	TRG	SEDIMENT 2016-03-16B	pCi/g	3.03E-01	1.45E-01	7.38E-02					ок	
06	TH-227	TRG	SEDIMENT 2016-03-16B DUP	pCi/g	2.01E-01	1.26E-01	1.26E-01					ок	
	<u></u> .				-								
											J		
									1				
								<u></u>					
											-		
											<u> </u>		
											1		
												-	
										ļ			

Preliminary Data Report & Analytical Calculations

Work Order: 16-03102-ThISO-1

Printed: 4/11/2016 8:03 AM

Page 2 of 3

Ž,	D	Lab Fraction	Nuclide	Sample Desc	Sample Date	Sample Aliquot	Radiometric % Rec	Grav % Rec	Mean % Rec	SAF	Sep t0 Date/Time	Sep t1 Date/Time
	3											
		02	TH-227	MBL	03/22/16 00:00	1.00E+00	137.36	0.00	0.00			
로		03	TH-227	DUP	03/16/16 13:35	9.97E-01	92.84	0.00	0.00			
a		04	TH-227	DO	03/16/16 13:35	1.01E+00	131.36	0.00	0.00			
2 CO	SC	05	TH-227	TRG	03/16/16 13:55	1.01E+00	109.29	0.00	0.00			
narysi	<u> </u>	06	TH-227	TRG	03/16/16 13:55	1.01E+00	91.89	0.00	0.00			
₹ .												
Order	2											
Work	10,											
alytical	03											
ine An	-9				<u></u>							
Eber	`											
	2											
	- 's											
	ate											
ent	200											
ີ້ວັ	Ass											
ļ	જ											
	ixie											
	Ar											
	Client Ebarline Analytical Work Order Analysis Code Kull	r & Associates, Inc. 16-03102 ThISO	r & Associates, Inc. 16-03/102 ThiSO 1	TH-227 O3 TH-227 O4 TH-227 O5 TH-227 O6 TH-227 TH-227 O6 TH-227	Client	102 TH-227 MBL 03/22/16 00:00	TH-227 MBL 03/22/16 00:00 1.00E+00 03/16/16 13:35 9.97E-01 04 TH-227 DO 03/16/16 13:35 1.01E+00 05/25/25/25 06 TH-227 TRG 03/16/16 13:55 1.01E+00 05/25/25/25 06 TH-227 TRG 03/16/16 13:55 1.01E+00 05/25/25/25 1.01E+00 05/25/25/25 1.01E+00 05/25/25/25 1.01E+00 05/25/25/25 1.01E+00 05/25/25/25 1.01E+00 05/25/25/25 1.01E+00 05/25/25/25 1.01E+00 05/25/25/25 1.01E+00 05/25/25/25 1.01E+00 05/25/25/25 1.01E+00 05/25/25/25 1.01E+00 05/25/25/25 1.01E+00 05/25/25/25 1.01E+00 05/25/25/25 1.01E+00 05/25/25/25 1.01E+00 05/25/25/25 1.01E+00 05/25/25/25/25/25/25/25/25/25/25/25/25/25	The property of the property o	CONTRACTION CONTRACTION	TOUR TH-227 MBL 03/22/16 00:00 1.00E+00 137.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Company Comp	The control of the

Work Order: 16-03102-ThISO-1

Printed: 4/11/2016 8:03 AM

Page 3 of 3

		Lab Fraction	Nuclide	Sample Desc	Counting Date/Time	Halflife (days)	Detect	Carrier	Count Time	Counts	Bkg CPM	Eff
Run	—	02	TH-227	MBL	04/08/16 14:44		A_Spec	Alpha_035		9.15 E+00	5.00 E-03	15.8
		03	TH-227	DUP	04/08/16 14:44		A_Spec	Alpha_036	170	1.98 E+01	1.30 E-02	18.7
ي ا		04	TH-227	DO	04/08/16 14:44		A_Spec	Alpha_037	170	1.57 E+01	2.00 E-03	16.5
S Cog	SC	05	TH-227	TRG	04/08/16 14:45		A_Spec	Alpha_038	170	1.97 E+01	2.00 E-03	16
Analysis Code	Thiso	06	TH-227	TRG	04/08/16 14:45		A_Spec	Alpha_039	170	1.28 E+01	1.30 E-02	18.6
_												
Order	2											
Work	10,											
Eberline Analytical Work Order	6-03102											
ne An	9											
Eberli	1								i			
	IC.											
), II					1						
	Associates, Inc.											
₌	oci											
Client	Ass											
	න්											
	Auxier &											
	Au				<u></u>							
\.		J [·							

Count Room Report Client: Auxier Associates, Inc.

16-03102-ThISO-1 (pCi/g) in SO Tracer ID: Th-18a

Printed: 4/8/2016 5:28 AM Page 1 of 1

4	(
N	0

Internal Fraction	Sample Desc	Client ID	Sample Date	Sample Aliquot	Tracer Aliquot (g)	Tracer ACT (dpm)	Radiometric Tracer (pCi)	Radiometric % Rec	SAF 1*	SAF 2*
01	LCS	LCS	03/22/16 00:00	1.0000	0.4655	10.4551		0.00		
02	MBL	BLANK	03/22/16 00:00	1.0000	0.2336	5.2467		0.00		
03	DUP	SEDIMENT 2016-03-16A	03/16/16 13:35	0.9970	0.2330	5.2332		0.00		
04	DO	SEDIMENT 2016-03-16A	03/16/16 13:35	1.0102	0.2327	5.2264		0.00		
05	TRG	SEDIMENT 2016-03-16B	03/16/16 13:55	1.0085	0.2328	5.2287		0.00		
06	TRG	SEDIMENT 2016-03-16B DUP	03/16/16 13:55	1.0126	0.2334	5.2422		0.00		
					·					
	<u> </u>									
					:					-
	ļ	<u> </u>		<u> </u>				1		<u> </u>

Spike and Tracer Worksheet

Page 1 of 1 Printed: 4/5/2016 11:21 AM

Internal Work Order			Run	Analysis Code				Tech	echnician		Technician Initials		Witness	Initials		
	16-0	3102		1	Thi	SO	4/5/201	6 11:17		JWC	LFE	· <u>·····</u>	M			
	LCS	& Matrix Sp	ikes		LCS	MS	LCSD	MSD	LC	S	M	S	LC	SD	MS MS	D
Isotope	Sol#	Activity dpm/g	Solution Date	Approx Addition	Volume Used (g)	Volume Used (g)	Volume Used (g)	Volume Used (g)	Known pCi	Error Estimate	Added pCi	Error Estimate	Known pCi	Error Estimate	Added pCi	Error Estimate
Th-228	Th-8b	103.560	4/5/2016	0.100	0.1026				4.79	0.172	0.00	0.000	0.00	0.000	0.00	0.000
Th-230	Th-1b	23.520	4/5/2016	0.500	0.5036		2.3		5.34	0.144	0.00	0.000	0.00	0.000	0.00	0.000
Th-232	Th-8b	103.560	4/5/2016	0.100	0.1026				4.79	0.172	0.00	0.000	0.00	0.000	0.00	0.000
Tc-99 MS	Tc-2a	22043.636	//5/2014	0.1		42.57	name or a significant in security	orania ili	mene kukikosista	enencia anti-	sesensity in the	eres - Colo	ezerine pela err	208642852555		
	dendi jeda jeveli Su sulospi daji		Tracers					행성을 받는 생각		Bai	ance Prir	iter i ape	:5			
fraction	Isotope	Sol#	Activity dpm/g	Solution Date	Volume Used (g)	Approx Addition			Tracer					LCS		
01	Th-229	Th-18a	22.460	4/5/2016	0.4655	0.2200	_						•		•	
02	Th-229	Th-18a	22.460	4/5/2016	0.2336	0.2200										
03	Th-229	Th-18a	22.460		ninterior strengthings.	0.2200										
04	Th-229	Th-18a	22.460	<u> </u>	Gelegier Granden	0.2200								0,5036		
05	Th-229	Th-18a	22.460	4/5/2016	The contract of the second	0.2200			A	d ti matan	•			0.1026	g	
06	Th-229	Th-18a	22.460	4/5/2016	0.2334	0,2200				.4655 g .2336 q						
				<u> </u>			-		Ø	. 2339 g						
					K.	<u> </u>	1			2327. g						
<u> </u>							1			.2328 g .2334 g				Matrix Spil	(e	
			<u> </u>				1			ares ²						
		-					1						- "			
										•						
														÷		
							_									
							_									
							1									
							_									
9		1										<u> </u>				

Aliquot Worksheet

Printed: 4/5/2016 9:42 AM

Page 1 of 1

Work Order	Run	Analysis Code	Rpt Units	Lab Deadline	Technician
16-03102	1	Thiso	grams	4/12/2016	JWOLFE

	La Dia sistes inc		Muffle Data	Г	Dilution Data	**-	Aliquo	t Data	MS Alic	uot Data	H-3 Solids Only	
Lab Fraction	Auxier & Associates, Inc.		Ratio	No of Dils	Dil Factor	Ratio	Aliquot	Net Equiv	Aliquot	Net Equiv	Water Added (m!)	H3 Dist Aliq
	Client ID	Type	Post/Pre	INU UI DIIS	Dil i actor	has seeiges.	1.0000E+00			5014851505152		
01	LCS	LCS				ris i grabbus.						
02	BLANK	MBL			承十三指統 九普		1.0000E+00					
03	SEDIMENT 2016-03-16A	DUP					9.9700E-01	9.9700E-01				
04	SEDIMENT 2016-03-16A	DO					1.0102E+00	100000				
05	SEDIMENT 2016-03-16B	TRG					1.0085E+00					
06	SEDIMENT 2016-03-16B DUP						1.0126E+00	1.0126E+00				
- 00	SEBIMENT 2010-00-102 20.			i de la composición de la composición de la composición de la composición de la composición de la composición								
			20. 15. jesma iziblio 2011	Hallister - Hallian	eris visa ta	a Chine i i						
			a de la la la de la compania de la compania de la compania de la compania de la compania de la compania de la c									
			a francisco de Colonia Galegia de Colonia de Colonia de Colonia de	Televipado Jestini		ner gente da de						
	<u> </u>			16 (14 (16) 1 (16) (16) (16) (16) (16) (16) (1	al de la compansa de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la co Para en la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la c			gader volleige er sit				
				200 BP 30 22 10V	i spino erise e ei ili. Periode e e e e e e e e e e e e e e e e e e	1 45 : 1245 A. 20 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :				de nas diversasses		
	<u> </u>		16 curis a computer	e della general di sicilo di				Similar Sylvanie (CA) Olemanie Sylvanie				***************************************
								Jäking Coubus Gir		440 00 00 00 00 00 00 00 00 00 00 00 00		
										Chief Chief Chief Chief		
		-										
										White West and a		
	_	ļ <u>.</u>										
		ļ <u> </u>		ir ada saka ilah sambabi di Jananara ada basara	Maria de la Compania br>Compania de la Compania de la Compa							

	T		•	
Comments		•	•	
	1		·	

Technician: ______ Date: 215114

Rough Sample Preparation Log Book

Printed: 3/23/2016 7:28 AM

Page 1 of 1

Work Order	Lab Deadline	Date Received in Prep	Date Sealed	Date Returned	Technician
16-03102	4/12/2016	3/22/2016	3/23/2016	3/24/2016	KSALLINGS

Eberline	Auxier & Associates, Inc.	Tare (g)	Gross	(g)	Net	(g)	Pero	ent	Gamma		Special
Fraction	_	Pan Wt	Wet Wt.	Dry Wt.	Wet Wt.	Dry Wt.	Liquid	Solid	Dry Wt.	LEPS Wt.	Info
04	SEDIMENT 2016-03-16A	28.8600	1273.0600	743.5800	1244.2000	714.7200	42.56%	57.44%	0.0000	0.0000	
05	SEDIMENT 2016-03-16B	29.1400	1389.3600	944.9200		915.7800	32.67%	67.33%	0.0000	0.0000	
	SEDIMENT 2016-03-16B DUP	29.0300	1180.8600	824.3000	1151.8300	795.2700	30.96%	69.04%	0.0000	0.0000	

•											
	-										
			AATA MARKETT I								
											184-1/6-11

Comments	
Special Codes	H: Hot, O: Organic Hazard, P: PCB Hazard, R: Rush, T: Other (see comments)

Sample Description:

SPIKE

01

Spectrum File:

\\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001480

Batch Identification:

1603102A-TH

Sample Identification: Sample Geometry:

Shelf 2

Procedure Description:

Th iso

Detector Name:

Alpha 034 Chamber Serial Number: 04026479B

Detector Serial Number: 91136

Env. Background: System Bkgd 149228

Reagent Blank:

<not performed>

Sample Size:

1.000E+000 +/- 0.000E+000 gram

Sample Date/Time:

4/8/2016 6:14:10 AM

Acquisition Date/Time: 4/8/2016
Acquisition Live Time: 170.0

2:44:53 PM

Acquisition Real Time:

170.0 minutes 170.0 minutes

Tracer Certificate:

Th229 S TH-18A

Tracer Quantity:

0.465 mL

Effective Efficiency:

0.2143 +/- 0.0128

Counting Efficiency:

0.1772 +/- 0.0031 on 12/11/2015 8:20:57 AM

Chem. Recovery Factor:

1.2093 +/- 0.0755

Control Certificate Name: NatTh_Th-8 Chem. Recov. of Control: TH-232

0.999046 +/- 0.084045

Peak Match Tolerance:

0.175 MeV

			PEAR	C AREA RI	EPORT				
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	Reagent Backgnd	FWHM (keV)		
TH-227 TH-228 TH-229 TH-230 TH-232	т	5.797 5.366 4.873 4.626 3.952	22.66 430.15 380.83 494.66 386.66	41.53 9.46 10.05 8.82 9.97	0.34 0.85 0.17 0.34 0.34	0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000	3.0 11.0 6.0 9.2 6.1		

T = Tracer Peak used for Effective Efficiency

 •			
 NUCLIDE	ANALYSIS	RESULTS	

Nuclide	Id Conf.	Energy (keV)	Activity (pCi/gram)	MDA (pCi/gram)
TH-227	0.985	5850.00*	2.87E-001 +/- 1.24E-001	6.06E-002 +/- 7.12E-003
TH-228	0.994	5400.00*	5.32E+000 +/- 8.03E-001	7.41E-002 +/- 8.70E-003
TH-229	1.000	4872.00*	4.73E+000 +/- 5.56E-001	5.19E-002 +/- 6.09E-003
TH-230	0.989	4672.00*	6.13E+000 +/- 9.00E-001	5.92E-002 +/- 6.95E-003
TH-232	0.989	3997.00*	4.78E+000 +/- 7.37E-001	5.91E-002 +/- 6.94E-003

Sample Title: 01

Elapsed Live time: Elapsed Real Time: 10200 10200

Channel -			_ .		_			
1:	o '	0 '	o '	o'	o'	o ˈ	oʻ	o'
9:	Ö	Ö	Ö	Ō	Ö	0	0	0
17:	Ö	i	Ö	1	Ö	Ō	0	0
25:	ĭ	0	Ö	ō	Ö	Ö	Ö	0
33:	Ó	0	ő	Ö	ŏ	Ö	ĺ	Ō
41:	ő	0	Ö	ŏ	Ö	Ö	0	0
49:	í	0	ő	Ö	Ö	Ö	1	Ō
57:	Ō	1	ŏ	Ö	Ö	Ö	0	Ō
65:	ő	0	Ö	ő	ŏ	ĺ	Ö	0
73:	ĺ	1	ő	Ö	Õ	0	1	0
81:	Ō	0	i	ĺ	Ö	Ö	ō	0
89:	ő	0	Ō	Ō	Ö	Ö	Ō	0
97:	Ö	0	Ö	1	ŏ	1	Ö	2
105:	1	0	2	0	3	ō	Ö	0
113:	Ō	1	1	Ö	1	4	Ŏ	Ō
121:	í	2	3	3	Ō	3	2	4
129:	Ō	1	2	0	2	4	2	2
137:	5	3	Õ	4	5	ī	2	0
145:	3	6	5	5	3	- 7	_ 5	7
153:	9	7	3	3	7	4	7	5
161:	13	8	2	5	10	6	5	6
169:	7	4	10	7	11	11	11	5
177:	4	10	10	10	11	10	12	7
185:	. 6	8	8	9	5	3	2	2
193:	2	0	Ö	ō	0	Ō	0	0
201:	ō	Ö	ŏ	Ö	Ö	Ö	Ö	0
209:	ĭ	1	ĺ	Ö	Ō	Ō	Ō	0
217:	ō	Ō	0	Ö	Ö	0	1	0
225:	ı 1	ŏ	Ö	Ö	Ö	Ō	0	0
233:	1	Ö	ō	Ō	0	0	0	0
241:	0	1	Ö	0	1	0	0	0
249:	ő	Ō	1	Ō	0	Ō	0	0
257:	Ö	Ō	ō	Ō	0	0	0	0
265:	Ö	Ö	1	Ō	0	1	0	0
273:	Ö	0	0	Ō	0	1	0	0
281:	Ō	Ö	Ō	1	0	0	0	1
289:	Ö	1	ĺ			1	0	0
297:	ő	Ō	0	0	1	0	0	0
305:	ő	Õ	Ö	1	0	0	0	1
313:	Õ	1	Ö	0	1	1	1	1
321:	ĺ	0	Ŏ	Ō	0 1 0 1 1 1	0	2	0
329:	0	1	ŏ	3	_ 1	1	1	0
337:	Ö	Ō	Ö	ī	1	0 1 1	2	1
345:	2	2	0	_ 1	1	0	0	1
353:	0	6	1	0 0 1 0 0 3 1 1 1 2	_ 3	1	3	1
361:	2	6 3	1 2	2	3 2	2	6	4
~ ~ · ·		_	_	_				

Channel Data Report 4/8/2016 5:45:41 PM Page 2

369: 3 7 5 5 4 6 4 5

Sample Title: 01

Channel						ı	1		ĺ
385: 5 6 13 9 8 12 12 10 401: 10 14 11 13 10 13 10 12 409: 12 9 13 11 9 14 5 4 417: 1 2 0 0 3 3 2 1 425: 2 2 2 1 0 3 0 3 433: 4 0 2 2 3 2 4 2 441: 4 5 5 1 4 2 3 7 447: 6 5 4 7 6 10 6 12 465: 6 5 9 6 7 9 7 6 3 5 481: 3 4 4 4 2 5 5 3 489: 2 2	Channel								
11		5							
A01: 10									
409: 12 9 13 11 9 14 5 4 417: 1 2 0 0 3 3 2 1 425: 2 2 2 1 0 3 0 3 433: 4 0 2 2 3 2 4 2 441: 4 5 5 5 1 4 2 3 7 449: 7 5 4 5 4 3 10 4 457: 3 7 4 7 6 10 6 12 465: 6 5 9 6 7 9 7 6 473: 3 9 3 4 7 6 3 5 4 497: 2 2 1 1 2 3 0 5 4 4 2 2									
417: 1 2 0 0 3 3 2 1 425: 2 2 2 1 0 3 0 3 431: 4 0 2 2 3 2 4 2 441: 4 5 5 1 4 2 3 7 447: 3 7 4 7 6 10 6 12 465: 6 5 9 6 7 9 7 6 473: 3 9 3 4 7 6 3 5 481: 3 4 4 4 2 5 5 3 487: 2 1 1 2 0 4 5 2 505: 2 2 2 3 3 1 1 2 1 1 2 1 1 2									
425: 2 2 2 1 0 3 0 3 433: 4 0 2 2 3 2 4 2 449: 7 5 4 5 4 3 10 4 457: 3 7 4 7 6 10 6 12 465: 6 5 9 6 7 9 7 6 473: 3 3 4 4 4 2 5 5 3 481: 3 4 4 4 2 5 5 3 489: 3 6 1 2 3 0 5 2 505: 2 2 3 3 3 1 1 2 505: 2 2 3 3 3 1 1 2 505: 2 2 3 3 3 1 1 2 505: 2 2 3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td></td></td<>								5	
433: 4 0 2 2 3 2 4 2 441: 4 5 5 5 1 4 2 3 7 4457: 3 7 4 7 6 10 6 12 465: 6 5 9 6 7 9 7 6 473: 3 9 3 4 7 6 3 5 481: 3 4 4 4 2 5 5 3 489: 3 6 1 2 3 0 5 4 497: 2 1 1 2 0 4 5 2 505: 2 2 2 3 3 1 1 2 2 505: 2 2 2 3 3 1 1 2 2 2 3 0 0 0 0 2 0 1 1 2 2 1 1	417:	1					3		1
441: 4 5 5 1 4 2 3 7 449: 7 5 4 5 4 3 10 4 457: 3 7 4 7 6 10 6 12 465: 6 5 9 6 7 9 7 6 473: 3 3 9 3 4 7 6 3 5 481: 3 4 4 4 2 5 5 3 489: 3 6 1 2 3 0 5 4 497: 2 1 1 2 0 4 5 2 505: 2 2 2 0 3 0 0 0 2 513: 1 2 0 3 0 0 0 2 2 3 0 0 2 3 0 0 0 0 0 0 0 0 0	425:	2	2				3		3
449: 7 5 4 5 4 3 10 4 457: 3 7 4 7 6 10 6 12 465: 6 5 9 6 7 9 7 6 473: 3 9 3 4 7 6 3 5 481: 3 6 1 2 3 0 5 4 497: 2 1 1 2 0 4 5 2 505: 2 2 3 3 0 0 0 0 2 505: 2 2 3 3 3 1 1 2 2 3 3 1 1 2 2 3 0 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<	433:	4	0	2	2	3	2		
449: 7 5 4 5 4 3 10 4 457: 3 7 4 7 6 10 6 12 465: 6 5 9 6 7 9 7 6 473: 3 9 3 4 7 6 3 5 481: 3 4 4 4 2 5 5 3 489: 3 6 1 2 3 0 5 4 497: 2 1 1 2 0 4 5 2 505: 2 2 3 3 0 0 0 0 2 521: 0 1 1 2 0 0 0 0 2 0 0 2 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	441:	4	5	5	1	4	2	3	7
457: 3 7 4 7 6 10 6 12 465: 6 5 9 6 7 9 7 6 481: 3 4 4 4 2 5 5 3 489: 3 6 1 2 3 0 5 4 497: 2 1 1 2 0 4 5 2 2 505: 2 2 3 3 3 1 1 2 0 0 0 2 2 3 0 0 0 0 2 2 2 0 0 0 0 0 2 0 0 0 0 2 0						4	3	10	4
465: 6 5 9 6 7 9 7 6 473: 3 9 3 4 7 6 3 5 480: 3 6 1 2 3 0 5 4 497: 2 1 1 2 0 4 5 2 2 505: 2 2 3 3 3 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2 2 2 2 2 3 3 3 1 1 2 2 2 3 0 0 0 0 0 2 0 </td <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td>10</td> <td>6</td> <td>12</td>				4			10	6	12
473: 3 9 3 4 7 6 3 5 481: 3 4 4 4 2 5 5 3 489: 3 6 1 2 3 0 5 4 497: 2 1 1 2 0 4 5 2 505: 2 2 3 3 3 1 1 2 505: 2 2 2 0 0 0 0 2 513: 1 2 0 3 0 0 0 0 2 529: 3 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
489: 3 6 1 2 3 0 5 4 497: 2 1 1 2 0 4 5 2 505: 2 2 3 3 3 1 1 2 513: 1 2 0 3 0 0 0 2 521: 0 1 1 2 1 2 3 0 529: 3 2 2 2 0 0 0 2 0 537: 0 1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							6		5
489: 3 6 1 2 3 0 5 4 497: 2 1 1 2 0 4 5 2 505: 2 2 3 3 3 1 1 2 513: 1 2 0 3 0 0 0 2 521: 0 1 1 2 1 2 3 0 529: 3 2 2 2 0 0 0 2 0 537: 0 1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3							3
497: 2 1 1 2 0 4 5 2 505: 2 2 3 3 3 1 1 2 513: 1 2 0 3 0 0 0 0 2 529: 3 2 2 2 0 0 2 0 0 537: 0 1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<		3						5	4
505; 2 2 3 3 1 1 2 513: 1 2 0 3 0 0 0 2 521: 0 1 1 2 1 2 3 0 529: 3 2 2 2 0 0 0 0 537: 0 1 3 2 0 0 0 0 545: 1 0 0 1 0		2				n		5	$\tilde{2}$
513: 1 2 0 3 0 0 0 2 2 521: 0 1 1 2 1 2 3 0 0 2 0 0 2 0 0 2 0 </td <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td>		2							2
521: 0 1 1 2 1 2 3 0 529: 3 2 2 2 0 0 2 0 537: 0 1 3 2 0									2
529: 3 2 2 2 0 0 2 0 537: 0 1 3 2 0 0 0 0 545: 1 0 0 1 0 0 0 0 0 553: 0 1 0 <					2				
537: 0 1 3 2 0 0 0 0 0 545: 1 0 0 1 0 </td <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>2</td> <td></td>					2			2	
545: 1 0 0 1 0									
553: 0 1 0 0 2 0 1 1 561: 1 0 0 0 0 0 0 0 569: 2 2 2 0 0 1 1 0 2 2 577: 0 2 0 1 0 0 2 2 585: 0 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 3 3 6 0 0 3 3 3 6 0 3 3 3 1 2 1 0									
561: 1 0 2 2 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0						0			
569: 2 2 0 0 1 1 0 2 577: 0 2 0 1 0 0 2 2 585: 0 0 0 1 1 2 0 593: 1 0 1 1 2 2 1 0 601: 4 2 2 0 4 0 3 3 609: 1 2 1 4 4 3 1 2 617: 0 0 6 1 5 5 5 5 3 625: 2 4 12 5 6 8 4 4 633: 4 5 4 7 7 6 12 7 641: 6 6 5 3 5 10 6 12 7 649: 10 14 15 10 13 7 5 2 2 665: 2 0									
577: 0 2 0 1 0 0 2 2 585: 0 0 0 0 1 1 2 0 593: 1 0 1 1 2 2 1 0 601: 4 2 2 0 4 0 3 3 609: 1 2 1 4 4 3 1 2 617: 0 0 6 1 5 5 5 3 625: 2 4 12 5 6 8 4 4 633: 4 5 4 7 7 6 12 7 641: 6 6 5 3 5 10 6 12 649: 10 14 15 10 13 15 7 17 657: 20 17 10									0
585: 0 0 0 0 1 1 2 0 593: 1 0 1 1 2 2 1 0 601: 4 2 2 0 4 0 3 3 609: 1 2 1 4 4 3 1 2 617: 0 0 6 1 5 5 5 3 625: 2 4 12 5 6 8 4 4 633: 4 5 4 7 7 6 12 7 641: 6 6 5 3 5 10 6 12 7 649: 10 14 15 10 13 15 7 17 16 15 13 7 5 22 17 10 15 13 7 5 22 17 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td></td<>									2
593: 1 0 1 1 2 2 1 0 601: 4 2 2 0 4 0 3 3 609: 1 2 1 4 4 3 1 2 617: 0 0 6 1 5 5 5 5 3 625: 2 4 12 5 6 8 4 4 633: 4 5 4 7 7 6 12 7 641: 6 6 5 3 5 10 6 12 7 641: 6 6 5 3 5 10 6 12 7 641: 6 6 5 3 5 10 6 12 7 657: 20 17 10 15 13 7 5 2 17 10<									
601: 4 2 2 0 4 0 3 3 609: 1 2 1 4 4 3 1 2 617: 0 0 6 1 5 5 5 3 625: 2 4 12 5 6 8 4 4 633: 4 5 4 7 7 6 12 7 641: 6 6 5 3 5 10 6 12 7 649: 10 14 15 10 13 15 7 17 657: 20 17 10 15 13 7 5 2 665: 2 0 1 0 1 0 0 0 673: 0 0 1 0 0 0 0 0 0 681: 0 0 0 0 0 0 0 0 0 0 0 0									
617: 0 0 6 1 5 5 5 3 625: 2 4 12 5 6 8 4 4 633: 4 5 4 7 7 6 12 7 641: 6 6 5 3 5 10 6 12 649: 10 14 15 10 13 15 7 17 657: 20 17 10 15 13 7 5 2 665: 2 0 1 0 1 0 0 0 673: 0 0 1 0 0 0 0 0 681: 0 0 0 0 0 0 0 0 0 689: 0									0
617: 0 0 6 1 5 5 5 3 625: 2 4 12 5 6 8 4 4 633: 4 5 4 7 7 6 12 7 641: 6 6 5 3 5 10 6 12 649: 10 14 15 10 13 15 7 17 657: 20 17 10 15 13 7 5 2 665: 2 0 1 0 1 0 0 0 673: 0 0 1 0 0 0 0 0 681: 0 0 0 0 0 0 0 0 0 689: 0									3
625: 2 4 12 5 6 8 4 4 633: 4 5 4 7 7 6 12 7 641: 6 6 5 3 5 10 6 12 649: 10 14 15 10 13 15 7 17 657: 20 17 10 15 13 7 5 2 665: 2 0 1 0 1 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td>2</td></td<>							3		2
633: 4 5 4 7 7 6 12 7 641: 6 6 5 3 5 10 6 12 649: 10 14 15 10 13 15 7 17 657: 20 17 10 15 13 7 5 2 665: 2 0 1 0 1 0 0 0 0 673: 0 0 1 0 1 1						5	5		
641: 6 6 5 3 5 10 6 12 649: 10 14 15 10 13 15 7 17 657: 20 17 10 15 13 7 5 2 665: 2 0 1 0 1 0 0 0 673: 0 0 1 0 0 0 0 0 681: 0 1 0 1									
649: 10 14 15 10 13 15 7 17 657: 20 17 10 15 13 7 5 2 665: 2 0 1 0 1 0 0 0 673: 0 0 1 0 0 0 0 0 681: 0 0 0 0 0 0 0 0 0 689: 0 1 1 1 1 1 1 1 1 1 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
657: 20 17 10 15 13 7 5 2 665: 2 0 1 0 1 0 0 0 673: 0 0 0 1 0 0 0 0 681: 0 0 0 0 0 0 0 0 0 689: 0 0 0 0 0 1 0 1 0 1 0 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>5</td><td></td><td></td><td></td></t<>						5			
665: 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
673: 0 0 1 0	657:	20				13	•		
673: 0 0 1 0	665:	2		1		1			0
689: 0 0 0 0 1 0 1 0 697: 0 2 1 0 0 0 0 0 705: 1 2 0 0 0 0 0 1 713: 1 1 1 1 0 1 1 2 1 721: 0 1 3 1 1 1 1 1 3 729: 0 3 4 0 1 3 3 2 737: 3 0 2 1 0 5 3 1 745: 2 2 1 5 0 2 1 0 753: 3 0 0 0 0 0 0 0 769: 0 1 0 0 0 0 0 0 0 785: 0 1 0 0 0 0 0 1 1	673:	0							
697: 0 2 1 0 0 0 0 0 705: 1 2 0 0 0 0 0 1 713: 1 1 1 0 1 1 2 1 721: 0 1 3 1 1 1 1 1 3 729: 0 3 4 0 1 3 3 2 737: 3 0 2 1 0 5 3 1 745: 2 2 1 5 0 2 1 0 753: 3 0 0 0 0 0 0 0 761: 0 0 0 0 0 0 0 0 769: 0 1 0 0 0 0 0 0 785: 0 1 0 0 0 0 0 1 1									0
705: 1 2 0 0 0 0 0 1 713: 1 1 1 0 1 1 2 1 721: 0 1 3 1 1 1 1 1 3 729: 0 3 4 0 1 3 3 2 737: 3 0 2 1 0 5 3 1 745: 2 2 1 5 0 2 1 0 753: 3 0 0 0 0 0 0 0 0 761: 0 <td>689:</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>0</td>	689:	0	0			1			0
753: 3 0 0 0 0 0 0 0 0 761: 0 0 0 0 0 0 0 0 0 769: 0 1 0 0 0 1 0 0 777: 1 0 1 0 1 0 2 0 785: 0 1 0 0 0 0 1 1	697:	0	2						0
753: 3 0 0 0 0 0 0 0 0 761: 0 0 0 0 0 0 0 0 0 769: 0 1 0 0 0 1 0 0 777: 1 0 1 0 1 0 2 0 785: 0 1 0 0 0 0 1 1	705:	1	2	0	0	0	0		1
753: 3 0 0 0 0 0 0 0 0 761: 0 0 0 0 0 0 0 0 0 769: 0 1 0 0 0 1 0 0 777: 1 0 1 0 1 0 2 0 785: 0 1 0 0 0 0 1 1	713:	1	1	1	0	1	1	2	1
753: 3 0 0 0 0 0 0 0 0 761: 0 0 0 0 0 0 0 0 0 769: 0 1 0 0 0 1 0 0 777: 1 0 1 0 1 0 2 0 785: 0 1 0 0 0 0 1 1		0		3	1	1	1	1	3
753: 3 0 0 0 0 0 0 0 0 761: 0 0 0 0 0 0 0 0 0 769: 0 1 0 0 0 1 0 0 777: 1 0 1 0 1 0 2 0 785: 0 1 0 0 0 0 1 1			3	4	0		3	3	2
753: 3 0 0 0 0 0 0 0 0 761: 0 0 0 0 0 0 0 0 0 769: 0 1 0 0 0 1 0 0 777: 1 0 1 0 1 0 2 0 785: 0 1 0 0 0 0 1 1	737:		0	2	1		5	3	1
753: 3 0 0 0 0 0 0 0 0 761: 0 0 0 0 0 0 0 0 0 769: 0 1 0 0 0 1 0 0 777: 1 0 1 0 1 0 2 0 785: 0 1 0 0 0 0 1 1		2	2	1	5		2	1	0
761: 0 0 0 0 0 0 0 0 0 0 0 769: 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0		3	0		0		0		0
769: 0 1 0 0 0 1 0 0 777: 1 0 1 0 1 0 2 0 785: 0 1 0 0 0 0 1 1									0
777: 1 0 1 0 1 0 2 0 785: 0 1 0 0 0 0 1 1									0
785: 0 1 0 0 0 0 1 1			0		Ō				0
793: 1 2 0 0 0 0 1 0						0		1	1
			2	0				1	0

Sample Title: O1	Channel	Data Report	5	4	/8/2016	5:45:	41 PM		Page 3
Channel	801:	0	1	0	0	0	0	0	0
809: 0		Sample Tit	tle:	01					
865: 0 0 0 0 1 1 0 0 873: 0 0 0 0 0 0 0 1 881: 0 0 0 0 0 0 0 0 889: 0 0 0 0 0 0 0 0 0 897: 1 0 0 0 0 0 0 0 1 905: 0 0 0 0 0 0 0 0 1 905: 0 0 0 0 1 1 0 0 2 913: 0 0 0 0 1 1 0 0 2 921: 2 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0	809: 817: 825: 833: 841:	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0
905: 0 0 0 1 1 0 0 2 913: 0 0 0 0 1 1 0 1 921: 2 0 1 1 1 0 0 929: 0 1 0 0 2 0 2 1 937: 1 3 0 3 0 0 1 1 1 945: 2 6 1 3 2 1 2 1 953: 3 1 3 1 1 0 2 0 961: 3 1 0 0 0 0 0 0 1 969: 1 1 0 0 0 0 0 0 0 0 977: 0	865: 873: 881: 889:	0 0 0	0 0	0 0 0	0 0 0	1 0 1 0	1 0 0 0	0 0 0 0	0 1 0 1
937: 1 3 0 3 0 0 1 1 945: 2 6 1 3 2 1 2 1 953: 3 1 3 1 1 0 2 0 961: 3 1 0 0 0 0 0 0 1 0	905: 913: 921:	0 0 2	0 0	0 0 1	1 0 1	1 1 1	0 1 1	0 0 0	2 1 0
1009: 0 0 0 0 0 0 0	945: 953: 961: 969: 977: 985: 993:	2 3 3 1 0 0	6 1 1 0 0	1 3 0 0 0 0	3 1 0 0 0 0	2 1 0 0 0 0	1 0 0 1 0 0	2 2 0 0 0 0	1 0 1 0 0 0
	1009:	0	Ō	Ö	Ō	0	O	Ō	0

Sample Description:

Spectrum File:

Batch Identification:

\\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001480

1603102A-TH

BLANK

Sample Identification:

Sample Geometry: Procedure Description: Th iso

02 Shelf 2

Detector Name:

Chamber Serial Number: 04026477A Detector Serial Number: 58771

Reagent Blank:

Alpha 035

Env. Background: System Bkgd 149229 <not performed>

Sample Size:

1.000E+000 +/- 0.000E+000 gram

Sample Size: 1.000E+000 +/- 0.000E+
Sample Date/Time: 4/8/2016 6:14:10 AM
Acquisition Date/Time: 4/8/2016 2:44:55 PM
Acquisition Live Time: 170.0 minutes
Acquisition Real Time: 170.0 minutes

Th229_S_TH-18A Tracer Certificate:

Tracer Quantity:

0.234 mL

Effective Efficiency: 0.2164 +/- 0.0170
Counting Efficiency: 0.1575 +/- 0.0028 on 12/11/2015 8:20:56 AM
Chem. Recovery Factor: 1.3736 +/- 0.1106

Peak Match Tolerance: 0.175 MeV

			PEAR	K AREA RI	EPORT			
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	Reagent Backgnd	FWHM (keV)	
TH-227		5.782	9.15	68.23	0.85	0.00E+000	3.0	
TH-228		5.298	-1.19	180.60	1.19	0.00E+000	0.0	
TH-229	\mathbf{T}	4.898	193.00	14.14	0.00	0.00E+000	4.8	
TH-230		4.643	13.49	54.53	0.51	0.00E+000	3.5	
TH-232		3.946	-0.34	592,90	0.34	0.00E+000	0.0	٠

T = Tracer Peak used for Effective Efficiency

---- NUCLIDE ANALYSIS RESULTS

	Id	Energy	Activity	MDA
Nuclide	Conf.	(keV)	(pCi/gram)	(pCi/gram)
				
TH-227	0.976	5850.00*	1.15E-001 +/- 8.04E-002	7.52E-002 +/- 1.16E-002
TH-228	0.948	5400.00*	-1.46E-002 +/- 2.64E-002	8.07E-002 +/- 1.24E-002
TH-229	0.996	4872.00*	2.37E+000 +/- 3.66E-001	7.38E-002 +/- 1.14E-002
TH-230	0.996	4672.00*	1.65E-001 +/- 9.38E-002	6.44E-002 +/- 9.91E-003
TH-232	0.986	3997.00*	-4.16E-003 +/- 2.47E-002	5.85E-002 +/- 9.01E-003

************* ***** SPECTRAL DATA REPORT ***** ***********

Sample Title: 02

Elapsed Live time: Elapsed Real Time: 10200 10200

Channel -						. 		
1:	oʻ	0	o ˈ	o '	o '	oʻ	o'	o'
9:	Ö	Ō	Ō	Ō	0	0	0	0
17:	Ö	Ö	Ö	Ō	Ö	0	0	0
25:	Ö	Ö	Ö	ō	Ö	Ō	Ō	0
33:	Ŏ	Ö	Ö	Ö	Ö	Ö	Ō	Ō
41:	ő	Ö	Ö	1	ő	Ö	Ö	Ö
49:	ő	Ö	Ö	0	ő	Ö	Ö	Ō
57 :	Ő	Ö	Ö	Ö	Ö	. 0	Ö	ō
65:	Ö	Ö	Ö	Ö	Ö	Ō	Ō	0
73:	Ö	Ö	Ö	Ö	Ö	Ö	Ō	Ō
81:	Õ	0	Ö	Õ	Ö	Ō	Ō	Ō
89:	Ö	Ö	Ö	Ö	Ö	Ō	Ō	Ō
97:	Ö	0	ő	Ö	Ö	Ö	Ö	Ō
105:	ő	0	Ö	Ö	ő	Ö	Ö	Ŏ
113:	Ö	0	Ö	Ö	Ő	Ö	Ö	Ö
121:	ő	0	Ö	Ö	Ö	Ö	Ö	Ö
129:	ő	Ö	ő	Ö	Ŏ	Ö	Ö	Ō
137:	Ö	Ö	Ö	Ö	Ō	Ō	Ö	0
145:	Õ	Ö	Ö	Ō	Ö	Ō	Ō	0
153:	Õ	Ö	Ö	Ŏ	Ō	0	Ō	0
161:	Ö	Õ	Ö	Ö	Ō	Ō	0	0
169:	Ô	Ö	Ō	Ō	0	0	0	0
177:	Ō	Ö	Ō	Ö	Ō	Ö	0	0
185:	Ö	Ö	Ö	Ö	Ō	Ö	Ō	0
193:	0	Ö	Ō	Ō	0	0	0	0
201:	Ō	Ö	Ö	Ö	0	0	0	0
209:	Ō	0	0	0	0	0	0	0
217:	Ō	0	0	0	0	0	0	0
225:	Ō	Ō	0	0	0	0	0	0
233:	0	0	0	0	0	0	0	0
241:	Ö	0	0	0	0	1	0	0
249:	0	Ô	0	0	0	0	0	0
257:	0	0	0	0	0	0	0	0
265:	0	0	0	0	0	0	0	1
273:	Ō	Ō	Ô	0	0	0	0	0
281:	0	Ō	0	0	0	0	0	0
289:	Ō	0	0	0		0	0	
297:	Ö	0	0	0 0	0 0	0	0	0 0
305:	0	0 0	0	0	0	0	0	0
313:	0	0	0	0	0	0	0	0 0
321:	Ō	0	0	0	0	0	0	0
329:	0	0	0	0	0	0	0	0
337:	0	0	0	0	0	0 1	0	0
345:	0	0	0	0	0	1	0	0
353:	0	0	0	0	0	0	0	0
361:	0	0	0	0	0	0	0	0

Channel	Data Rep	oort	4	/8/2016	5:45:	47 PM		Page 2
369:	0	0	0	0	0	0	0	1
: : : :	Sample	Title:	02					
Channel	-	-						
377:	0	1	1	0	0	0	1	0
385:	1	, 0	0	0	0	0	0	0
393:	0	0	0	0	0	0	0	0
401:	0	0	0	0	0	0	0	0
409:	1	0	0	4	1	1	0	1
417:	0	0	0	0	0	0	0	0
425:	0	0	0	1	0	0	0	0
433:	1	1	0	1	0	1	1	1
441:	1	0	0	0	1	1	1	1
449:	0	2	2	5	2	3	2	5
457:	3	2	3	3	2	3	1	6
465:	3	5	3	4	3	4	2	1
473:	2	4	1	1	. 2	2	5	2
481:	3	3	2	3	4	2	3	1 2 3
489:	2	3	0	3	2	1	3	0
497:	1	2	2	0	2	2	1	1
505:	1	4	4	2	1	2	1	1
513:	0	4	0	2	1	2	2	0
521:	0	0	1	0	0	1	1	2
529:	0	1	2	1	2	2	0	0
537:	1	1	1	0	0	0	1	1
5 4 5:	0	0	0	0	0	0	0	0
553:	0	Ō	0	Ō	0	Ō	Ō	0
561:	0	Ō	Ō	0	Ō	0	Ō	Ō
569:	Ō	Ō	0	Ō	Ō	Ō	Ō	Ō
577 :	0	Ö	0	0	0	0	Ō	0
585:	0	Ō	Ō	0	Ō	Ō	Ō	0
593:	Ō	Ō	Ō	Ō	Ō	Ō	Õ	Ō
601:	0	Ö	0	Ō	0	0	Ō	Ō
609:	0	Ō	Ō	Ō	Ō	Ō	Ō	0
617:	Ō	Ō	Ō	Ō	Ö	Ö	Ö	Ō
625:	0	0	0	Ö	0	0	0	0
633:	0	0	0	0	0	0	0	0
641:	0	0	0	0	0	0	0	0
649:	0	0	0	0	0	0	0	0
657 :	0	0	0	0	0	0	0	0
665:	0	0	0	0	0	0	0	0
673:	0	0	0	0	0	0	0	0 0 0
681:	0	0	0	0	0	0	0	0
689:	0	0	0	0	0	0	0	0
697:	0	0	0	0	0	0	0	0
705:	0	0	0	0	0	0	0	0
713:	0	0	0	0	0	0	0	0
721:	0	0	0	0	0	0	0	0 0
729:	0	0	0	0	0	0	0	0
737:	0	1	0	0	0	0	0	0
745:	0	0	0	0	0	0	0	0
753:	0	0	0	0	0	0	0	0
761:	0	1	0	0	0	0	0	0
769:	0	0	2	0	1	0	0	0
777:	0	0	0	0	2	0	2	0
785:	0	0	0	0	0		0	0
793:	0	0	0	0	0	1 0	0	0

Channel	Data Rep	ort		4/8/201	6 5:4	5:47 PM		Page 3
801:	1	0	0	0	0	0	0	0
	Sample	Title:	02					
Channel							_	
809:	0	0	0	0	0	0	0	0
817:	0	0	0	0	0	0	0	0
825:	0	0	0	0	0	0	0	0
833:	0	0	0	0	0	0	0	0
841:	0	0	0	0	0	0	0	0
849:	0	0	0	0	0	0	0	0
857:	0	0	0	0	0	0	0	0
865:	0	0	0	0	0	1	0	0
873:	0	0	0	0	1	0	0	0
881:	0	0	0	0	. 0	0	0	0
889:	0	0	0	0	1	0	0	0
897:	0	0	0	0	0	0	0	0
905:	0	0	0	0	0	0	0	0
913:	0	0	0	0	0	0	0	0
921:	0	0	0	0	0	0	0	0
929:	0	0	0	0	0	0	0	0
937:	0	0	1	0	0	0	0	0
945:	0	0	0	0	0	0	0	1
953:	0	0	0	0	0	0	0	0
961:	0	0	0	0	1	1	0	0
969:	0	0	0	1	1	0	0	0
977:	0	0	0	Ō	0	0	0	0
985:	0	0	0	0	0	0	0	0
993:	0	0	0	0	0	0	0	0
1001:	0	. 0	0	0	0	0	0	0
1009:	0	0	0	0	0	0	0	0
1017:	0	0	0	0	0	0	0	0

Sample Description:

SEDIMENT 2016-03-16A-DUP

Spectrum File:

\\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001480

Batch Identification: 1603102A-TH

Sample Identification: 03 Sample Geometry:

Shelf 2

Procedure Description: Th iso

Alpha 036 Chamber Serial Number: 04026477B

Detector Serial Number: 84167

Env. Background: System Bkgd 149230

Reagent Blank:

Detector Name:

<not performed>

Sample Size:

9.970E-001 +/- 0.000E+000 gram

Sample Size:

Sample Date/Time:

Acquisition Date/Time:

Acquisition Live Time:

Acquisition Real Time:

9.9/0E-001 +/- 0.000E-001

4/8/2016 6:14:10 AM

4/8/2016 2:44:57 PM

170.0 minutes

Tracer Certificate: Tracer Quantity:

Th229_S_TH-18A

0.233 mL

Effective Efficiency: 0.1736 +/- 0.0150
Counting Efficiency: 0.1870 +/- 0.0033 on 12/11/2015 8:20:54 AM
Chem. Recovery Factor: 0.9284 +/- 0.0821

Peak Match Tolerance: 0.175 MeV

			-					
	•		PEAK	AREA RI	EPORT			
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	Reagent Backgnd	FWHM (keV)	. <i></i>
TH-227 TH-228 TH-229 TH-230 TH-232	Т	5.832 5.376 4.882 4.643 3.967	19.79 67.79 154.47 544.98 71.00	46.85 24.26 15.86 8.41 23.42	2.21 2.21 1.53 1.02 0.00	0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000	3.0 4.9 4.7 24.1 4.4	

T = Tracer Peak used for Effective Efficiency

---- NUCLIDE ANALYSIS RESULTS

Nuclide	Id	Energy	Activity	MDA
	Conf.	(keV)	(pCi/gram)	(pCi/gram)
TH-227	0.998	5850.00*	3.11E-001 +/- 1.55E-001	1.26E-001 +/- 2.14E-002
TH-228	0.997	5400.00*	1.06E+000 +/- 3.15E-001	1.25E-001 +/- 2.13E-002
TH-229	0.999	4872.00*	2.38E+000 +/- 4.04E-001	1.09E-001 +/- 1.86E-002
TH-230	0.996	4672.00*	8.36E+000 +/- 1.58E+000	9.66E-002 +/- 1.64E-002
TH-232	0.995	3997.00*	1.09E+000 +/- 3.14E-001	9.18E-002 +/- 1.56E-002

************ ***** SPECTRAL DATA REPORT ***** *************

Sample Title: 03

Elapsed Live time: Elapsed Real Time: 10200 10200

	HIGPSOG I							
Channel -		. - :	-			-	-	·
1:	0	0	0	1	0	0	0	0
9:	0	0	0	0	1	0	0	0
17:	0	0	0	0	0	0	0	0
25:	0	0	0	0	0	0	0	0
33:	0	0	0	0	1	0	0	0
41:	0	0	0	0	0	0	0	0
49:	0	0	0	0	0	0	0	0
57:	0	0	0	0	0	0	0	0
65:	0	0	0	0	0	0	0	0
73:	1	0	0	0	0	0	0	0
81:	0	0	0	0	0	1	0	0
89:	0	0	0	0	0	0	0	0
97:	0	0	0	0	0	0	0	0
105:	Ō	1	0	0	0	0	0	1
113:	Ö	0	0	1	0	1	0	1
121:	Ō	0	1	0	0	0	1	1
129:	Ö	Ō	0	0	0	0	0	0
137:	Ö	Ō	ĺ	1	0	0	0	0
145:	Ö	ō	$\overline{\mathtt{1}}$	2	0	0	0	0
153:	Ö	Ö	0	0	0	3	0	0
161:	ĺ	Ö	1	ī	1	0	1	0
169:	2	Ö	2	Ō	1	1	2	2
177:	2	2	$\tilde{\overline{2}}$	1	3	2	0	1
185:	2	3	2	3	2	3	6	0
193:	2	2	ō	1	1	1	0	0
201:	Õ	0	ŏ	0	0	0	0	0
209:	Ö	Ö	ő	Ö	Ō	Ö	2	0
217:	0	0	ĭ	Ö	Ö	Ö	0	0
225:	ő	0	Ō	Ö	Ö	1	Ō	0
233:	0	0	ő	Ö	Ö	ō	Ō	0
241:	0	0	ő	0	Ö	Ö	Ō	0
249:	0	0	Ö	i	ő	Ö	Ö	Ō
257:	0	0	Ö	Ō	Ö	Õ	Ō	0
265:	0	0	ő	Ö	ő	1	Ö	0
273:	0	0	ő	1	ĺ	ō	Ö	Ō
281:	0	0	1	Ō	Ō	Õ	Ō	0
289:	0	1	1	Õ	Ö	Ō	Ō	
209:	0	1 1	1 0	0 0	ő	Ö	Ō	1
305:	0	0	0	Ö	ő	Ö	Ö	1
313:	1	0	0	Ö	1	Ö	Ö	0
321:	1	0	0	0	1 0	Ŏ	Ö	1
321:	0	0	0	2	ŏ	Ö	Ö	0
329:	0	0	7	0	0	0	0	1
337:	1	0	<u> </u>	1	0	0	Ö	1
345:	0	0	٠ ٢	<u>.</u> 1	0	1	1	0
353: 361:	0 1	1	0 1 0 2 0	0 2 0 1 1	0 1	0	1	0 1 0 1 0 1 0 3
361:	7	1.	U	1	_	U	<u> </u>)

Channel Data Report 4/8/2016 5:45:56 PM Page 2
369: 1 0 1 1 3 0 0 2

Sample Title: 03

	защрте т.	rcie:	0.3					
Channel						-		
377:	1	1	4	1 '	4 '	2 ່	3 ່	6 ່
385:	4	ī	4	- 9	6	5	8	7
393:	9	3	9	13	14	11	10	6
401:	11	12	16	4	8	10	14	14
401:	15	15	15	20	27	22	27	20
417:	35	24	25	13	11	7	6	2
		0	1	1	0	1	0	ō
425:	1		0	0	0	0	0	1
433:	0	0		0	1	0	1	ī
441:	1	1	0	1	0	2	1	1
449:	1	0	1		U	2	2	0
457:	2	2	1	1	5 5	4	6	3
465:	2	0	0	4	5	3		1
473:	8	3	6	5	3		2	2
481:	3	2	7	0	1	4	1	
489:	1	2	0	1	0	1	2	1
497:	0	0	2	2	3	1	1	0
505:	1	0	0	1	0	5	1	1
513:	2	1	1	2	1	0	2	1
521:	1	0	0	1	0	0	0	1
529:	0	2	2	0	2	0	1	0
537:	0	1	3	0	0	0	0	1
545:	0	0	0	1	1	0	0	0
553 :	0	0	0	0	0	0	0	0
561:	0	0	0	0	0	.0	0	0
569:	0	1	0	0	0	0	0	0
57 7:	0	0	0	0	0	0	0	0
585:	0	0	0	0	0	0	0	0
593:	0	0	0	0	1	0	0	0
601:	0	1	0	0	0	0	0	0
609:	0	0	1	0	0	0	0	0
617:	1	1	0	1	1	0	0	0
625:	0	1	0	0	0	0	1	0
633:	1	0	1	0	2	2	2	1
641:	1	0	2	2	1	1	0	2
649:	. 0	0	1	1	1	0	2	1
657:	\$ O	2	2 3	1	1	2	5	2
665:	3	5	3	1	4	1	1	1 1
673:	1	2	0	0	0	0	0	Τ
681:	0	0	0	0	0	0	0	0
689:	0	0	0	0	0	0	0	0
697:	0	0	0	0	0	0	0	0
705:	0	0 -	0	0	0	0	0	0
713:	0	0	0	0	0	0	0	0
721:	0	0	0	0	0	0	0	0
729:	0	0	0	0	0	0	2	0
737:	0	0	0	0	1	0	0	0
745:	0	1	0	0	0	1	0	0
753:	0	1	0	1	1	0	0	. 0
761:	0	0	0	0	0	0	0	0
769:	1	0	0	0	0	0	0	0
777:	1	0	1	0	0	0	1	0
785:	0	1	1	0	1	0	0	1 0
793:	1	0	0	0	1	0	1	U

Channel	Data Repor	t	4 /	/8/2016	5:45:5	56 PM		Page	3
801:	2	0	0	0	1	1	1	0	
	Sample Ti	tle:	03						
Channel 809: 817: 825: 833: 841: 849: 857: 865: 873: 881: 889: 905: 913: 921: 929: 937:	 0 0 0 0 0 1 0 0 0 0 0 0 0 0				 0 0 0 0 1 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 1 0 0 0 0		
945: 953: 961: 969: 977: 985: 993: 1001: 1009:	0 0 0 1 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 2 1 0 0 0	0 0 1 0 0 0 0	0 0 2 0 0 0 0	0 1 0 0 0 0 0 0 0	1 1 0 0 0 0	

Sample Description:

Spectrum File:

Batch Identification:

Sample Identification: Sample Geometry:

Procedure Description:

SEDIMENT 2016-03-16A

\\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001480

1603102A-TH

04

Shelf 2 Th iso

Detector Name:

Chamber Serial Number: Detector Serial Number: 91133

Env. Background: Reagent Blank:

Alpha 037

04026478A

System Bkgd 149231 <not performed>

Sample Size:

Sample Date/Time: Acquisition Date/Time: 4/8/2016 2:44:59 PM
Acquisition Live Time: 170.0 minutes

Acquisition Real Time:

1.010E+000 +/- 0.000E+000 gram

3/16/2016 6:14:10 AM

170.0 minutes

Tracer Certificate:

O.233 mL
O.2161 +/Counting Efficiency: 0.1645 +/Chem. Recovery Factor: 1.3136

Peak Matcl

Th229_S_TH-18A

0.0170

0.1645 +/- 0.0029 on 12/11/2015 8:20:53 AM

1.3136 +/- 0.1060

Peak Match Tolerance:

			- 									
			PEAK	AREA RE	EPORT							
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	Reagent Backgnd	FWHM (keV)					
TH-227 TH-228 TH-229 TH-230 TH-232	Т	5.882 5.383 4.893 4.655 3.976	15.66 54.47 192.00 574.32 67.49	50.15 26.99 14.18 8.18 23.96	0.34 1.53 0.00 0.68 0.51	0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000	3.0 5.0 3.9 14.2 18.1					

T = Tracer Peak used for Effective Efficiency

 	- 		
 NUCLIDE	ANALYSIS	RESULTS	

Nuclide	Id	Energy	Activity	MDA
	Conf.	(keV)	(pCi/gram)	(pCi/gram)
TH-227	0.995	5850.00*	1.95E-001 +/- 1.03E-001	5.96E-002 +/- 9.20E-003
TH-228	0.998	5400.00*	6.77E-001 +/- 2.10E-001	8.84E-002 +/- 1.36E-002
TH-229	0.998	4872.00*	2.34E+000 +/- 3.61E-001	7.31E-002 +/- 1.13E-002
TH-230	0.998	4672.00*	6.98E+000 +/- 1.22E+000	6.86E-002 +/- 1.06E-002
TH-232	0.998	3997.00*	8.19E-001 +/- 2.33E-001	6.37E-002 +/- 9.83E-003

Sample Title: 04

Elapsed Live time: 10200 Elapsed Real Time: 10200

Channel				·				-
1:	0	0	0	0	0	0	0	0
9:	0	0	0	0	0	0	0	0
17:	0	0	0	0	0	0	0	0
25:	0	0	0	0	0	0	0	0
33:	0	0	0	. 0	0	0	0	0
41:	0	0	0	0	0	0	0	0
49:	0	0	0	0	0	0	0	0
57:	Ō	0	0	0	0	0	0	0
65:	Ô	0	0	0	0	. 0	0	1
73:	Ô	Ö	0	0	0	0	0	0
81:	Ö	Ō	Ō	0	2	0	0	0
89:	0	Ō	0	0	0	0	0	0
97:	Ō	Ö	0	0	0	0	0	0
105:	Ö	Ö	0	0	1	0	0	0
113:	i	Ö	Ö	Ö	1	0	0	0
121:	ō	Ö	Ö	Ö	0	0	0	0
129:	2	Ö	1	Ō	1	0	1	0
137:	Ō	Ŏ	1	Ō	0	1	0	1
145:	ŏ	Ö	0	1	0	0	2	3
153:	Ö	2	ĺ	3	1	0	1	2
161:	1	2	ī	2	1	3	1	3
169:	4	4	3	4	4	0	0	1
177:	3	1	ő	Ō	ĺ	Ō	0	0
185:	ő	ō	ŏ	ĺ	0	Ō	1	0
193:	0.	0	o ·	0	Ö	Ō	0	0
201:	0	0	ő	Ő	Ö	Ö	0	0
209:	0	0	ő	Ö	Ö	Ō	0	0
217:	0	0	Ö	Ö	Ö	ō	Ō	0
225:	0	0	ő	Ö	Ö	Ö	Ö	0
233:	0	0	Ö	1	Ö	Ö	Ō	0
241:	0	0	Ö	0	Ö	Ō	0	0
249:	0	Ő	1	ĺ	Ö	Ö	Ô	0
257:	0	1	Ō	1	Ö	Ō	Ō	0
265:	Ö	0	Ö	0	1	Ō	0	0
273:	0	Ö	ő	Ö	0	Ō	0	1
281:	0	Ö	1	Ö	Ō	Ö	0	0
289:	Ö	Ö	1				0	0
297:	Ö	Ö	1	Ô	0	0 2 1	0	0
305:	Ö	Ö	Ō	Õ	Ô	$\bar{f 1}$	1	0
313:	Ö	1	ŏ	Ô	Ô	Ō	0	0
321:	Ö	0	Ö	1	0	1	1	0
329:	Ö	Ö	1	ō	1	Ō	0	2
337:	2	0	1 1	Õ	0 0 0 0 0 1	Ö	1	0
345:	0		1	3	Ö	Ö	2	
353:	2	- 1	1	2	$\overline{4}$	2	2	2
361:	2 6	2 1 0	1 1	0 0 0 1 0 0 3 2 5	4 6	5	2	4 2 3
201:	U	J	<u> </u>	3	Ŭ	_	_	_

 Channel Data Report
 4/8/2016
 5:46:02 PM
 Page 2

 369:
 7
 10
 6
 7
 6
 5
 6
 11

Sample Title: 04

		Sample	Title:	0,4					
C	hannel		· -						
	377:	8	11	11	5	16	9	12	13
	385:	13	10	16	17	25	13	16	22
	393:	28	32	26	12	27	30	12	15
	401:	15	12	9	3	5	2	2	0
	409:	_ 1	1	0	0	1	2	1	1
	417:	0	0	0	0	0	1	0	1
	425:	2	1	0	0	0	4	3	0
	433:	0	2	1	2	6	2	1	3
	441:	3	2	1	1	1	5 5	3 5 2	6
	449:	2	7	1	4	5	5	5	7
	457:	3	4	7	0	1	4	2	1
	465:	1	1	2	2	1	4	2	1
	473:	1	1	2	2	3	1	1	1
	481:	1	2	2	2	0	1	1	2
	489:	1	1	1	2	1	3	2	0
	497:	0	1	0	1	1	1	1	0
	505:	1	1	3	0	0	0	0	1
	513:	2	1	0	1	1	2	4	0
	521:	3	1	1	0	1	0	0	0
	529:	0	0	0	0	0	0	0	0 0
	537:	0	0	0	0	0	0	0	0
	545:	0	0	0	0	0	0	0	0
	553:	0	0	0	0	0		0	0
	561:	0	0	1	0	0	0	0	
	569:	0	0	1	0	0	1 0	0	
	577:	0	0	0	1 0	0	0	0	
	585:	0	0	0 1	0	0	0	0	
	593:	0	0	0	0	0	0	. 0	
	601:	0	0 1	0		0	1	0	
	609:	0 2	1	4		3	0	0	
	617:	0	1	0	4	2		2	
	625: 633:	0	1	3		2	5	2	
	633: 641:	2	2	1		2	0	0	
	649:	1	2	Ō		0		Ō	
	649: 657:	0	0	0		ő		0	
	665:	0	0	0		ő	Ō	Ō	
	673:	0	0	0		0		0	
	681:	0	0	ĺ	0	0		0	0
	689:	Ö	Ö	1 0	Ō	0			0
	697:	0	Ö	0	Ō	0	1	0	
	705:	Ŏ	Ö	0	0	0		0	
	713:	Ö	Ö	0	0	0		0	
	721:	Ō	0	1	. 0	0	0	0	
:	729:	Ö	0	0	0	1	0	C	
	737:	0	1	0	0	0			
:	745:	0	0	0	0	0			. 0
	753:	0	0	0	0	1			
	761:	0	0	0	0	0			
	769:	0	0	1	. 0	0			
	777:	0	0	0	1	0			. 0
	785:	1	0	0	0	0			
	793:	0	0	0	0	0	0	. (0

Channel D	ata Repor	t		4/8/2016	5:46:0)2 PM		Page 3
801:	0	0	0	0	0	0	0	0
	Sample Ti	tle:	04					
Channel -		- -						
809:	0	0	0	0	0	0	0	0
817:	0	0	0	0	0	0	0	0
825:	0	1	1	1	0	0	1	0
833:	0	0	1	0	. 0	1	0	0
841:	0	0	0	0	0	0	1	0
849:	0	0	0	0	0	0	0	. 0
857:	0	0	0	0	0	. 0	0	1
865:	0	0	0	0	0	0	0	0
873:	0	0	1	0	0	0	0	0
881:	0	0	0	0	0	0	0	0
889:	0	0	0	0	0	0	0	0
897:	0	0	0	0	0	0	0	0
905:	1	0	0	0	0	0	0	0
913:	0	1	0	0	0	0	0	0
921:	0	0	0	0	0	0	0	0
929:	0	0	0	0	0	2	1	0
937:	0	0	0	0	1	0	1	1
945:	0	0	0	0	0	0	0	0
953:	2	0	0	0	0	0	0	0
961:	0	0	0	0	0	0	0	0
969:	0	0	0	0	0	0	0	0
977:	0	.0	0	0	0	0	0	0
985:	0	0	0	0	0	0	0	0
993:	0	0	0	0	0	0	0	0
1001:	0	0	0	1	0	0	0	0
1009:	0	0	0	0	0	0	0	0
1017:	0	0	0	0	0	0	0	0

Sample Description:

SEDIMENT 2016-03-16B

Spectrum File:

\\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001480

Batch Identification: 1603102A-TH

Sample Identification: 05 Sample Geometry:

Shelf 2

Procedure Description: Th iso

Detector Name:

Alpha 038 Chamber Serial Number: 04026478B Detector Serial Number: 91134

Reagent Blank:

Env. Background: System Bkgd 149232 <not performed>

Sample Size: 1.008E+000 +/- 0.000E+000 gram
Sample Date/Time: 3/16/2016 6:14:10 AM
Acquisition Date/Time: 4/8/2016 2:45:01 PM
Acquisition Live Time: 170.0 minutes
Acquisition Real Time: 170.0 minutes

Tracer Certificate: Tracer Quantity: Th229_S_TH-18A 0.233 mL

Effective Efficiency: 0.1749 +/- 0.0151
Counting Efficiency: 0.1601 +/- 0.0028 on 12/11/2015 8:20:51 AM
Chem. Recovery Factor: 1.0929 +/- 0.0961

Peak Match Tolerance: 0.175 MeV

					- 			
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	Reagent Backgnd	FWHM (keV)	
TH-227		5.822	19.66	44.65	0.34	0.00E+000	3.0	
TH-228		5.381	70.32	23.50	0.68	0.00E+000	10.5	
TH-229	${f T}$	4.883	155.49	15.75	0.51	0.00E+000	5.0	
TH-230		4.643	301.32	11.31	0.68	0.00E+000	34.4	
TH-232		3.974	49.00	28.28	0.00	0.00E+000	4.2	

T = Tracer Peak used for Effective Efficiency

---- NUCLIDE ANALYSIS RESULTS

	Id	Energy	Activity	MDA
Nuclide	Conf.	(keV)	(pCi/gram)	(pCi/gram)
				
TH-227	0.996	5850.00*	3.03E-001 +/- 1.45E-001	7.38E-002 +/- 1.25E-002
TH-228	0.998	5400.00*	1.08E+000 +/- 3.13E-001	8.68E-002 +/- 1.46E-002
TH-229	0.999	4872.00*	2.35E+000 +/- 3.96E-001	7.92E-002 +/- 1.34E-002
TH-230	0.995	4672.00*	4.53E+000 +/- 9.21E-001	8.49E-002 +/- 1.43E-002
TH-232	0.997	3997.00*	7.36E-001 +/- 2.42E-001	9.01E-002 +/- 1.52E-002

*************** ***** SPECTRAL DATA REPORT ***** *************

Sample Title: 05

Elapsed Live time: 10200 Elapsed Real Time: 10201

Channel	-						- 	
1:	oʻ	o ˈ	0	. 0	0	0	0	0
9:	0	0	0	0	0	0	0	0
17:	0	1	0	0	0	0	1	0
25:	0	0	0	0	0	0	0	0
33:	0	0	0	0	0	1	0	0
41:	0	0	1	0	0	0	0	0
49:	0	0	0	0	0	1	0	0
57:	0	0	0	0	0	. 0	0	0
65:	0	1	0	0	0	0	0	0
73:	0	0	0	0	0	0	0	0
81:	0	0	0	0	0	0	0	0
89:	0	0	0	0	0	0	0	1
97:	0	0	0	0	0	1	0	0
105:	0	0	0	0	0	0	. 0	0
113:	0	0	0	0	0	0	0	0
121:	1	0	0	0	0	0	0	0
129:	0	0	0	0	0	0	1	
137:	1	2	0	0	0	0	0 1	
145:	0	0	0	0	0	1		
153:	0	0	0	1	0	0		
161:	1	2	1	1	1 0	1 1		
169:	1	0	0	0	2	7		
177:	4	1	2	3 0	0	0		
185:	2	1	0	0	1	0		
193:	0	0	0	0	0	0		
201:	0	0	0	0	0	0		
209:	0	0	0	0	0	1		
217:	0	0	0	0	0	0		
225: 233:	0	0	0	0	0	0		
233: 241:	1	0	0		0	ő		
241:	0	0	0		Ö	Ö		
257:	0	1	0		Ö	ō		
265:	0	0	0		Ō	Ō		
203: 273:	0	Ö	ŏ			0		
281:	Ô	o o	1	0	0	0	1	. 1
289:	Ö	0	0	0	0	1	. 0	0
297:	Ö	Ō	0			0		. 0
305:	Ō	0	0				1	. 0
313:	0	1	0			0) (2
321:	0	0	0	0	1	C		
329:	0	0	0	. 0	0	C) 0
337:	0	1	0	0	1	C		0
345:	0	0	0	0	0	C) 1
353:	1	0	1	. 0	1	1	_ (
361:	1	0	0	0	1	1	. () 1

Channel Data Report 4/8/2016 5:46:08 PM Page 2
369: 3 1 3 0 3 4 2 1

Sample Title: 05

	sample.	ricie:	05					
Channel	l l _ .		 	_ 				
377:	4	3	6	2	3	8	4	6
385:	4	6	4	4	6	3	7	7
393:	3	5	6	10	6	8	14	11
	9	14	14	13	11	11	12	13
401:				6		1	0	1
409:	7	9	7		0			1
417:	0	1	0	0	1	0	2	
425:	0	1	0	0	1	1	1	0
433:	1	0	4	0	0	1	1	1
441:	1	0	0	1	1	0	2	2
449:	0	1	2	0	3	2	6	5
457:	3	1	5	5	2	8	4	3
465:	· 4	0	3	2	2	1	0	÷ 1
473:	3	2	3	0	1	2	0	0
481:	4	3	1	2	3	1	2	1
489:	2	2	1	0	2	2	1	0
497:	2 2	1	0	0	1	1	0	2
505:	1	1	0	0	0	0	0	1
513:	ō	0	0	1	3	1	1	0
521:	ĺ	Ō	1	2	1	3	2	0
529:	Ō	Ö	<u>-</u> 1	0	Ō	1	2	0
537:	ő	ő	2	Ö	Ö	Ō	1	0
545:	ő	0	0	ő	Ö	Ö	0	0
553:	0	0	0	Ö	Ö	Ö	Ö	Ö
561:	0	0	0	0	0	0	Ö	Ö
		0	0	0	0	0	Ö	Ö
569:	0			0	0	0	0	0
577 :	0	0	0				0	0
585:	0	0	1	0	0	0		0
593:	0	0	0	0	1	0	0	
601:	0	0	1	0	0	0	1	2
609:	0	0	0	0	. 0	0	0	0
617:	2	0	0	1	0	0	0	3
625:	0	0	1	0	2	0	2	1
633:	2	2	0	0	0	0	0	2
641:	2	0	2	2	1	1	0	3
649:	2	4	5	4	2	5	3	5
657:	3	1	0	1	0	0	1	0
665:	0	0	0	0	0	0	0	0
673:	0	0	0	0	0	0	0	0
681:	0	0	0	0	0	0	0	1
689:	0	0	0	0	0	0	0	0
697:	0	0	0	0	0	0	0	0
705:	0	0	0	0	0	0	0	0
713:	0	0	0	0	0	0	0	0
721:	Ō	. 0	0	0	0	0	0	0
729:	ō	Ö	Ö	Ō	Ō	0	0	0
737:	1	Ö	Ö	Ō	1	1	0	0
745:	1	1	Õ	Ö	Ō	3	Ö	Ö
753:	Ō	1	Ö	Ö	Ö	0	Ö	Ö
761:	1	1	0	0	0	Ŏ	Ö	Ö
761: 769:	0	1	0	1	0	Ö	0	Ö
	1	1	0	0	0	0	1	0
777:					0	1	0	0
785:	0	0	0	0 1	0	0	0	0
793:	2	0	0	Τ	U	. 0	U	U

Channel	Data Repo	rt		4/8/2016	5:46:	08 PM		Page	3
801:	0	0	0	0	0	0	0	0	
	Sample T	itle:	05						
Channel			- -						
809:	0	0	0	Ö	0	0	0	1	
817:	1	0	0	0	0	0	0	0	
825:	0	0	0	0	0	0	0	0	
833:	0	0	0	0	0	0	0	0	
841:	0	0	0	0	0	0	0	0	
849:	0	0	0	0	0	0	1	0	
857:	0	1	0	0	1	0	0	0	
865:	0	0	0	0	0	0	0	0	
873:	0	1	0	0	0	1	0	0	
881:	0	0	0	0	0	0	0	0	
889:	1	0	0	0	0	1	0	0	
897:	0	0	0	0	0	0	0	: 0	
905:	0	0	0	0	0	0	0	0	
913:	0	0	0	0	0	0	0	0	
921:	0	0	0	0	0	1	0	0	
929:	0	0	0	0	0	0	0	0	
937:	1	0	0	0	1	2	0	1	
945:	0	0	0	0	2	2	0	0	
953:	0	0	0	0	0	1	0	0	
961:	0	0	0	0	0	0	0	0	
969:	0	0	0	0	0	0	0	0	
977:	0	0	0	0	0	0	0	0	
985:	0	0	0	0	0	0	0	0	
993:	0	1	0	0	0	0	0	0	
1001:	0	0	0	0	0	0	0	0	
1009:	0	0	0	0	0	0	0	0	
1017:	0	0	0	0	0	0	. 0	0	

Sample Description:

Spectrum File:

Batch Identification:

Sample Identification: Sample Geometry:

Procedure Description:

1603102A-TH 06

Shelf 2 Th iso

Detector Name:

Chamber Serial Number: 06027396A Detector Serial Number: 83109

Reagent Blank:

Alpha 039

Env. Background: System Bkgd 149233 <not performed>

Sample Size:

Sample Date/Time: 3/16/2016 6:14:10 AM
Acquisition Date/Time: 4/8/2016 2:45:03 PM
Acquisition Live Time: 170.0 minutes

Acquisition Real Time:

1.013E+000 +/- 0.000E+000 gram

\\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001480

SEDIMENT 2016-03-16B DUP

170.0 minutes 170.0 minutes

Tracer Certificate: Tracer Quantity:

Effective Efficiency: 0.1711 +/- 0.0150
Counting Efficiency: 0.1862 +/- 0.0032 on 12/11/2015 8:20:49 AM
Chem. Recovery Factor: 0.9189 +/- 0.0820

Th229 S TH-18A

0.233 mL

Peak Match Tolerance:

0.175 MeV

								
			PEAR	C AREA RI	EPORT			
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	Reagent Backgnd	FWHM (keV)	
TH-227 TH-228 TH-229 TH-230 TH-232	Т	5.832 5.390 4.885 4.654 3.975	12.79 39.43 152.45 286.30 54.96	60.09 32.83 16.03 11.62 27.01	2.21 3.57 2.55 1.70 2.04	0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000	4.5 11.0 4.5 18.8 5.5	

T = Tracer Peak used for Effective Efficiency

---- NUCLIDE ANALYSIS RESULTS

Nuclide	Id Conf.	Energy (keV)	Activity (pCi/gram)	MDA (pCi/gram)
TH-227	0.998	5850.00*	2.01E-001 +/- 1.26E-001	1.26E-001 +/- 2.15E-002
TH-228 TH-229	0.999 0.999	5400.00* 4872.00*	6.18E-001 +/- 2.29E-001 2.34E+000 +/- 4.02E-001	1.48E-001 +/- 2.53E-002 1.29E-001 +/- 2.21E-002
TH-230	0.998	4672.00*	4.39E+000 +/- 9.09E-001	1.13E-001 +/- 1.93E-002
TH-232	0.998	3997.00*	8.41E-001 +/- 2.69E-001	1.19E-001 +/- 2.04E-002

*************** ***** SPECTRAL DATA REPORT ***** **************

Sample Title: 06

Elapsed Live time: 10200 Elapsed Real Time: 10201 10200

Channel	- - -	 		_	- - - -			-
1:	' o'	oʻ	o ˈ	oʻ	o ˙	o ·	0	0
9:	Ö	0	0	1	0	0	0	0
17:	1	Ō	0	0	0	0	0	0
25:	ō	Ō	0	0	0	0	0	0
33:	Ö	Ō	0	0	1	0	0	1
41:	Ö	0	0	0	0	0	0	0
49:	Ō	1	2	0	0	0	0	0
57:	0	0	0	0	0	0	0	0
65:	0	0	0	0	0	0	0	0
73:	0	0	0	0	0	0	0	0
81:	0	0	0	0	0	0	0	0
89:	0	0	0	1	0	0	0 .	0
97:	0	0	0	0	0	0	0	0
105:	0	0	0	0	0	0	0	0
113:	0	0	0	0	0	0	0	1
121:	0	0	0	0	1.	0	0	0
129:	0	0	0	0	0	1	0	0
137:	0	0	0	0	0	0	0	1
145:	1	0	1	0	0	0	2	0
153:	0	4	1	2	1	1	0	0
161:	2	1	1	0	0	1	0	0
169:	0	1	0	2	2	0	6	4
177:	1	2	5	2	4	1	1	2
185:	1	1	0	0	0	0	0	0
193:	0	0	0	0	0	0	0	0
201:	0	0	0	0	0	0	0	0
209:	0	0	0	0	0	0	0	0 0
217:	0	0	0	0	0	0	0 0	0
225:	0	0	0	0	1	0	0	0
233:	0	0	0	0	0	0 0	1	0
241:	0	0	0	0	0	0	0	0
249:	0	0	0	0	0 0	0	0	0
257:	0	0	0	0	0	0	0	1
265:	0	0	0	0 0	0	0	Ö	ō
273:	0	0	0	1	0	0	Ö	Ö
281:	0	•	0		0	0	1	ő
289:	0	0	0 0	0 0	0	0	1	ñ
297:	0	0	0	0	0	0	0	Ô
305:	0	0	0	0	0	Ö	ő	Ô
313:	0 0	0 0	0	0	0	0	ŏ	Õ
321:	0	0	0	0	0	ő	Ö	Õ
329:	0	ນ ວ	0	0	0	Ö	1	Ō
337: 345:	0	2 0	0	1	Ö	Ö	1	2
242: 252.	0	0	1	0	Ö	Ŏ	0	0
353:	1	0	0 1 1	0	· 1	3	0 1	0 0 0 0 0 0 2
361:	<u>.</u>	v	_	U	-	-	-	

785:

793:

Channel	Data Repor	t		4/8/2016	5:46:	16 PM		Page 3
801:	0	0	0	0	0	0	0	0
	Sample Ti	tle:	06					
Channel					·		· -	
809:	0	0	0	0	0	0	0	0
817:	0	0	0	0	0	0	0	0
825:	0	0	0	0	0	0	0	0
833:	0	0	0	0	0	0	0	0
841:	0	0	0	0	0	0	0	0
849:	0	1	1	0	0	0	0	0
857:	0	0	0	0	0	0	0	0
865:	0	0	0	0	0	0	0	1
873:	0	0	0	0	0	0	0	0
881:	0	0	0	0	0	0	0	0
889:	1	0	0	0	0	0	0	0
897:	. 0 `	0	0	0	0	0	0	1
905:	0	0	0	0	0	Ō	0	0
913:	0	0	0	0	0	1	0	Ō
921:	0	0	0	0	0	0	0	0
929:	0	0	0	0	0	0	0	0
937:	0	0	0	0	0	0	1	0
945:	0	0	1	0	0	0	1	1
953:	0	0	0	0	0	1	1	0
961:	3	2	0	0	0	0	0	0
969:	0	0	0	0	0	0	0	0
977:	0	0	0	0	0	0	0	0
985:	0	0	0	0	0	0	0	0
993:	0	0	0	0	0	0	0	0
1001:	0	0	0	0 ,	0	0	0	0
1009:	0	0	0	0	0	0	0	0
1017:	0	0	0	0	0	0	0	0

QA SUMMARY REPORT Review Of QA Results - Pulser Check

Date : 4/8/2016 Time : 5:33:35 AM

CHAMBER	DEVICE	PARAMETER	FLAG	DATE
Alpha 001	21f	ALL	Not Done	
Alpha 002	21f	ALL	Not Done	
Alpha 003	21f	ALL	Passed	4/8/2016 4:54:33 AM
Alpha 004	21f	ALL	Passed	4/8/2016 4:54:34 AM
Alpha 005	21f	ALL	Not Done	
Alpha 006	21f	ALL	Not Done	
Alpha 007	21f	ALL	Not Done	
Alpha 008	21f	ALL	Not Done	
Alpha 009	21f	ALL	Not Done	
Alpha 010	21f	ALL	Passed	4/8/2016 4:54:34 AM
Alpha 011	21f	ALL	Passed	4/8/2016 4:54:35 AM
Alpha 012	21f	ALL	Passed	4/8/2016 4:54:36 AM
Alpha 013	21f	ALL	Not Done	
Alpha 014	21f	ALL	Passed	4/8/2016 4:54:37 AM
Alpha 015	21f	ALL	Passed	4/8/2016 4:54:38 AM
Alpha 016	21f	ALL	Not Done	
Alpha 033	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:54:39 AM
Alpha 034	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:54:40 AM
Alpha 035	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:54:42 AM
Alpha 036	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:54:43 AM
Alpha 037	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:54:45 AM
Alpha 038	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:54:46 AM
Alpha 039	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:54:48 AM
Alpha 040	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:54:50 AM
Alpha 041	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:54:51 AM
Alpha 042	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:54:53 AM
Alpha 043	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:54:54 AM
Alpha 044	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:54:56 AM
Alpha 045	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:54:58 AM
Alpha 046	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:54:59 AM
Alpha 047	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:55:01 AM
Alpha 048	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:55:03 AM
Alpha 049	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:55:04 AM
Alpha 050	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:55:06 AM
Alpha 051	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:55:08 AM
Alpha_052	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:55:09 AM
Alpha 053	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:55:11 AM
Alpha 054	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:55:13 AM
Alpha 055	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:55:15 AM
Alpha 055	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:55:17 AM
Alpha 057	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:55:19 AM
Alpha 057	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:55:20 AM

Review of QA Results - Pulser Check

Page 2 of 2

4/8/2016 5:33:35 AM

CHAMBER	DEVICE	PARAMETER	FLAG	DATE
Alpha 059	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:55:22 AM
Alpha 060	Alpha Analyst100DC	ALL	Passed	4/8/2016 4:55:24 AM

APPROVED BY:

APPROVAL DATE: 4/6-1

Nuclide Library Title: Thorium

Nuclide Library Description: Th-227,-228,-229,-230,-232

Nuclide	Half-Life	Energy	Energy	Yield	Yield
Name	(Seconds)	(keV)	Uncert. (keV)	(%)	Uncert.(Abs.+-)
TH-227 TH-228 TH-229 TH-230 TH-232	6.873E+008 6.034E+007 2.487E+011 2.379E+012 4.434E+017	5850.000* 5400.000* 4872.000* 4672.000* 3997.000*	0.000 0.000 0.000	97.5000 99.9400 99.5200 99.8200 100.0000	0.0000 0.0000 0.0000 0.0000 0.0000

^{* =} key line

TOTALS:

⁵ Nuclides

⁵ Energy Lines

SECTION X

ANALYTICAL DATA (GAMMA SPECTROSCOPY)

	•
Work Order	16-03102
Analysis Code	Gamma
Run	1
Date Received	3/21/2016
Lab Deadline	4/12/2016
Client	Auxier & Associates, Inc.
Project	WESTLAKE NCC
Report Level	4
Activity Units	pCi
Aliquot Units	g
Matrix	so
Method	LANL ER-130 Modified
Instrument Type	Gamma Spectroscopy
Radiometric Tracer	
Radiometric Sol#	
Tracer Act (dpm/g)	
Carrier	
Carrier Conc (mg/ml)	

		Tan I			
Internal Fraction	Sample Desc	Client ID	Login CPM	Sample Date	Sample Aliquot
01	LCS	LCS		03/22/16 00:00	1.0000E+00
02	MBL	BLANK		03/22/16 00:00	1.0000E+00
03	DUP	SEDIMENT 2016-03-16A	36	03/16/16 13:35	4.4758E+02
04	DO	SEDIMENT 2016-03-16A	36	03/16/16 13:35	4.4758E+02
05	TRG	SEDIMENT 2016-03-16B	38	03/16/16 13:55	5.4129E+02
06	TRG	SEDIMENT 2016-03-16B DUP	34	03/16/16 13:55	5.3601E+02
		SATE STATE OF THE	· •••		
					
		·			

^{*} SAF1 is used for Gross Alpha and all other radionuclides. SAF2 is used for Gross Beta only.
^ Indicates estimated SAF value.
** Actual mass exceeded the calibration curve range. Results should be qualified as appropriate.

Printed: 3/23/2016 10:37 AM Page 2 of 3

Internal Fraction	Sample Desc	Tracer Aliquot (g)	Tracer Total ACT (dpm)	Radiometric Tracer (pCi)	Radiometric % Rec	Grav Carrier Added (ml)	Grav Filter Tare (g)	Grav Filter Final (g)	Grav Filter Net (g)	Grav % Rec	Mean % Rec	SAF 1*	SAF 2*
01	LCS				0.00								
02	MBL				0.00								
03	DUP				0.00								
04	DO				0.00								
05	TRG				0.00								
06	TRG				0.00	-							
		Arvira											
		<u> </u>								-			
******													1
													-
										1			
		1											
<u> </u>													-

Internal Fraction	Sample Desc	Rough Prep Date	Rough Prep By	Prep Date	Prep By	Sep t0 Date/Time	Sep t0 By	Sep t1 Date/Time	Sep t1 By
01	LCS				:				
02	MBL						1		
03	DUP								
04	DO	03/23/16 07:28	KSALLINGS						
05	TRG	03/23/16 07:28	KSALLINGS)		
06	TRG	03/23/16 07:28	KSALLINGS	· · · · · · · · · · · · · · · · · · ·		, a so			
						, and			
*	<u> </u>								
					1				
				1000					
	1								

^{*} SAF1 is used for Gross Alpha and all other radionuclides. SAF2 is used for Gross Beta only.
^ Indicates estimated SAF value.
** Actual mass exceeded the calibration curve range. Results should be qualified as appropriate.

Preliminary Data Report & Analytical Calculations

Work Order: 16-03102-Gamma-1

Printed: 4/13/2016 2:32 PM Page 1 of 2

F	Lab raction	Nuclide	Sample Desc	Client Identification	Activity Units	Results	Error Estimate	MDA	LSC Known	LCS %R	LCS Flag	RPD Flag	Sample Date	Sample Aliquot	Counting Date/Time	Identified
\vdash	01	CO-60	LCS	LCS	pCî/g	1.38E+02	7.79E+00	7.44E-01	1.37E+02	100.71	ок		03/22/16 00:00	1.00E+00	04/11/16 07:33	YES
	01	CS-137	LCS	LCS	pCi/g	8.88E+01	7.27E+00	9.37E-01	8.69E+01	102.15	ок		03/22/16 00:00	1.00E+00	04/11/16 07:33	YES
1	02	AC-228	MBL	BLANK	pCi/g	8.69E-02	7.85E-02	1.64E-01					03/22/16 00:00	1.00E+00	04/13/16 13:15	NO
\vdash	02	B!-214	MBL	BLANK	pCi/g	-6.16E-04	4.64E-02	7.39E-02					03/22/16 00:00	1.00E+00	04/13/16 13:15	NO
-	02	K-40	MBL	BLANK	pCi/g	-3.82E-01	3.60E-01	3.28E-01					03/22/16 00:00	1.00E+00	04/13/16 13:15	NO
	02	PA-231	MBL	BLANK	pCi/g	4.98E-02	7.34E-01	1.15E+00	-				03/22/16 00:00	1.00E+00	04/13/16 13:15	NO
\vdash	02	PB-210	MBL	BLANK	pCi/g	4.51E-01	4.95E-01	7.39E-01					03/22/16 00:00	1.00E+00	04/13/16 13:15	NO
	02	PB-212	MBL	BLANK	pCi/g	3.90E-02	3.50E-02	6.07E-02					03/22/16 00:00	1.00E+00	04/13/16 13:15	NO
-	02	PB-214	MBL	BLANK	pCi/g	1.31E-02	5.06E-02	7.74E-02					03/22/16 00:00	1.00E+00	04/13/16 13:15	NO
1	02	RA-226	MBL	BLANK	pCi/g	-6.16E-04	4.64E-02	7.39E-02					03/22/16 00:00	1.00E+00	04/13/16 13:15	NO
-	02	RA-228	MBL	BLANK	pCi/g	8.69E-02	7.85E-02	1,64E-01					03/22/16 00:00	1.00E+00	04/13/16 13:15	NO
	02	TH-234	MBL	BLANK	pCi/g	1,32E-01	4.28E-01	5.89E-01					03/22/16 00:00	1.00E+00	04/13/16 13:15	NO
\vdash	02	TL-208	MBL	BLANK	pCi/g	3.99E-02	5.67E-02	1.07E-01					03/22/16 00:00	1.00E+00	04/13/16 13:15	NO
-	03	AC-228	DUP	SEDIMENT 2016-03-16A	pCi/g	9.79E-01	3,27E-01	5.59E-01					03/16/16 13:35	4.48E+02	04/13/16 07:02	YES
\vdash	03	BI-214	DUP	SEDIMENT 2016-03-16A	pCi/g	1.86E+00	2.34E-01	3.73E-01				ок	03/16/16 13:35	4.48E+02	04/13/16 07:02	YES
-	03	K-40	DUP	SEDIMENT 2016-03-16A	pCi/g	1.69E+01	2.40E+00	1.52E+00				oĸ	03/16/16 13:35	4.48E+02	04/13/16 07:02	YES
\vdash	03	PA-231	DUP	SEDIMENT 2016-03-16A	pCi/g	9.51E-01	2.17E+00	3.74E+00					03/16/16 13:35	4.48E+02	04/13/16 07:02	NO
-	03	PB-210	DUP	SEDIMENT 2016-03-16A	pCi/g	4.78E+00	1.80E+00	2.74E+00					03/16/16 13:35	4.48E+02	04/13/16 07:02	YES
+	03	PB-212	DUP	SEDIMENT 2016-03-16A	pCi/g	1.35E+00	1.80E-01	3.11E-01					03/16/16 13:35	4.48E+02	04/13/16 07:02	YES
\vdash	03	PB-214	DUP	SEDIMENT 2016-03-16A	pCi/g	1.81E+00	2.41E-01	2.92E-01				OK	03/16/16 13:35	4.48E+02	04/13/16 07:02	YES
\vdash	03	RA-226	DUP	SEDIMENT 2016-03-16A	pCi/g	1.86E+00	2.34E-01	3.73E-01					03/16/16 13:35	4.48E+02	04/13/16 07:02	YES
-	03	RA-228	DUP	SEDIMENT 2016-03-16A	pCi/g	9.79E-01	3.27E-01	5.59E-01					03/16/16 13:35	4.48E+02	04/13/16 07:02	YES
+	03	TH-234	DUP	SEDIMENT 2016-03-16A	pCi/g	2.18E+00	1.80E+00	2.98E+00					03/16/16 13:35	4.48E+02	04/13/16 07:02	YES
-	03	TL-208	DUP	SEDIMENT 2016-03-16A	pCi/g	1.06E+00	1.92E-01	5.65E-02					03/16/16 13:35	4.48E+02	04/13/16 07:02	YES
-	04	AC-228	DO	SEDIMENT 2016-03-16A	pCi/g	1.30E+00	2.92E-01	5.70E-01					03/16/16 13:35	4.48E+02	04/13/16 08:07	YES
┢	04	BI-214	DO	SEDIMENT 2016-03-16A	pCi/g	1.70E+00	2.29E-01	1.01E-01					03/16/16 13:35	4.48E+02	04/13/16 08:07	YES
H	04	K-40	DO	SEDIMENT 2016-03-16A	pCi/g	1.59E+01	2.22E+00	1.00E+00					03/16/16 13:35	4.48E+02	04/13/16 08:07	YES
H	04	PA-231	DO	SEDIMENT 2016-03-16A	pCi/g	5.84E-01	1.00E+00	3.94E+00					03/16/16 13:35	4.48E+02	04/13/16 08:07	NO
H	04	PB-210	DO	SEDIMENT 2016-03-16A	pCi/g	3.32E+00	2.14E+00	3.49E+00			Ī		03/16/16 13:35	4.48E+02	04/13/16 08:07	YES
\vdash	04	PB-212	DO	SEDIMENT 2016-03-16A	pCi/g	1.21E+00	1.75E-01	3.42E-01					03/16/16 13:35	4.48E+02	04/13/16 08:07	YES
ŀ	04	PB-214	DO	SEDIMENT 2016-03-16A	pCi/g	1.86E+00	2.42E-01	3.36E-01					03/16/16 13:35	4.48E+02	04/13/16 08:07	YES
ŀ	04	RA-226	DO	SEDIMENT 2016-03-16A	pCi/g	1.70E+00	2.29E-01	1.01E-01					03/16/16 13:35	4.48E+02	04/13/16 08:07	YES
r 10	04	RA-228	DO	SEDIMENT 2016-03-16A	pCì/g	1.30E+00	2.92E-01	5.70E-01					03/16/16 13:35	4.48E+02	04/13/16 08:07	YES
	04	TH-234	DO	SEDIMENT 2016-03-16A	pCi/g	1.43E+00	1.67E+00	2.24E+00					03/16/16 13:35	4.48E+02	04/13/16 08:07	NO
	04	TL-208	DO	SEDIMENT 2016-03-16A	pCi/g	9.38E-01	2.15E-01	5.65E-02					03/16/16 13:35	4.48E+02	04/13/16 08:07	YES
Trans.	05	AC-228	TRG	SEDIMENT 2016-03-16B	pCi/g	1.08E+00	2.05E-01	3.80E-01					03/16/16 13:55	5.41E+02	04/13/16 09:12	YES
	05	BI-214	TRG	SEDIMENT 2016-03-16B	pCi/g	1.13E+00	1.78E-01	8.31E-02					03/16/16 13:55	5.41E+02	04/13/16 09:12	YES
-	05	K-40	TRG	SEDIMENT 2016-03-16B	pCi/g	1.32E+01	1.89E+00	1.12E+00					03/16/16 13:55	5.41E+02	04/13/16 09:12	YES

Eberline Analytical
Oak Ridge Laboratory

Preliminary Data Report & Analytical Calculations

Work Order: 16-03102-Gamma-1

Printed: 4/13/2016 2:32 PM Page 2 of 2

Lab Fraction	Nuclide	Sample Desc	Client Identification	Activity Units	Results	Error Estimate	MDA	LSC Known	LCS %R	LCS Flag	RPD Flag	Sample Date	Sample Aliquot	Counting Date/Time	Identified
05	PA-231	TRG	SEDIMENT 2016-03-16B	pCi/g	1.15E+00	1.64E+00	2.82E+00					03/16/16 13:55	5.41E+02	04/13/16 09:12	МО
05	PB-210	TRG	SEDIMENT 2016-03-16B	pCi/g	2.84E+00	1,41E+00	2.22E+00					03/16/16 13:55	5.41E+02	04/13/16 09:12	YEŞ
05	PB-212	TRG	SEDIMENT 2016-03-16B	pCi/g	9.74E-01	1.43E-01	2.47E-01					03/16/16 13:55	5.41E+02	04/13/16 09:12	YES
05	PB-214	TRG	SEDIMENT 2016-03-16B	pCi/g	1.20E+00	1.50E-01	2.48E-01					03/16/16 13:55	5.41E+02	04/13/16 09:12	YES
05	RA-226	TRG	SEDIMENT 2016-03-16B	pCi/g	1.13E+00	1.78E-01	8.31E-02					03/16/16 13:55	5,41E+02	04/13/16 09:12	YES
05	RA-228	TRG	SEDIMENT 2016-03-16B	pCi/g	1.08E+00	2.05E-01	3.80E-01					03/16/16 13:55	5.41E+02	04/13/16 09:12	YES
05	TH-234	TRG	SEDIMENT 2016-03-16B	pCi/g	1.09E+00	1.46E+00	1.91E+00					03/16/16 13:55	5.41E+02	04/13/16 09:12	NO
05	TL-208	TRG	SEDIMENT 2016-03-16B	pCi/g	7.01E-01	1,50E-01	4.67E-02					03/16/16 13:55	5.41E+02	04/13/16 09:12	YES
06	AC-228	TRG	SEDIMENT 2016-03-16B DUP	pCi/g	9.22E-01	2.43E-01	5.07E-01					03/16/16 13:55	5.36E+02	04/13/16 10:13	YES
06	BI-214	TRG	SEDIMENT 2016-03-16B DUP	pCi/g	1.32E+00	2.05E-01	2.42E-01					03/16/16 13:55	5.36E+02	04/13/16 10:13	YES
06	K-40	TRG	SEDIMENT 2016-03-16B DUP	pCi/g	1.43E+01	1.91E+00	4.63E-01					03/16/16 13:55	5.36E+02	04/13/16 10:13	YES
06	PA-231	TRG	SEDIMENT 2016-03-16B DUP	pCi/g	1.09E+00	2.06E+00	3.14E+00					03/16/16 13:55	5.36E+02	04/13/16 10:13	NO
06	PB-210	TRG	SEDIMENT 2016-03-16B DUP	pCi/g	1.59E+00	1.61E+00	2.68E+00					03/16/16 13:55	5.36E+02	04/13/16 10:13	YES
06	PB-212	TRG	SEDIMENT 2016-03-16B DUP	pCi/g	1.09E+00	1.41E-01	2.68E-01					03/16/16 13:55	5.36E+02	04/13/16 10:13	YES
06	PB-214	TRG	SEDIMENT 2016-03-16B DUP	pCi/g	1.38E+00	1.68E-01	2.48E-01	 .				03/16/16 13:55	5.36E+02	04/13/16 10:13	YES
06	RA-226	TRG	SEDIMENT 2016-03-16B DUP	pCi/g	1.32E+00	2.05E-01	2.42E-01					03/16/16 13:55	5.36E+02	04/13/16 10:13	YES
06	RA-228	TRG	SEDIMENT 2016-03-16B DUP	pCi/g	9.22E-01	2.43E-01	5.07E-01		1	1		03/16/16 13:55	5.36E+02	04/13/16 10:13	YES
06	TH-234	TRG	SEDIMENT 2016-03-16B DUP	pCi/g	2.01E+00	1.70E+00	2.83E+00					03/16/16 13:55	5.36E+02	04/13/16 10:13	YES
06	TL-208	TRG	SEDIMENT 2016-03-16B DUP	pCi/g	7.31E-01							03/16/16 13:55	5.36E+02	04/13/16 10:13	YES

Count Room Report
Client: Auxier Associates, Inc.

16-03102-Gamma-1 (pCi/g) in SO Tracer ID:

Mysmon

Printed: 3/23/2016 10:37 AM Page 1 of 1

Internal Fraction	Sample Desc	Client ID	Sample Date	Sample Aliquot	Tracer Aliquot (g)	Tracer ACT (dpm)	Radiometric Tracer (pCi)	Radiometric % Rec	SAF 1*	SAF 2*
- المكار	ŁCS	LCS	03/22/16 00:00	1.0000				0.00		
92	MBL	BLANK	03/22/16 00:00	1.0000				0.00		
83	DUP	SEDIMENT 2016-03-16A	03/16/16 13:35	447.5800				0.00		
_04	DO	SEDIMENT 2016-03-16A	03/16/16 13:35	447.5800				0.00	n	
05	TRG	SEDIMENT 2016-03-16B	03/16/16 13:55	541.2900				0.00		
08	TRG	SEDIMENT 2016-03-16B DUP	03/16/16 13:55	536.0100				0.00		
								7		
- ALLANDOOM -										
			- AMPERITY							

1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 Tel 404-352-8677 Fax 404-352-2837 www.analyticsinc.com

CERTIFICATE OF CALIBRATION

Standard Radionuclide Source

GAS-1302

94268

Sand in 16 Ounce PP Taral Jar Filled to Top

Customer:

Eberline Analytical Corporation

P.O. No.: 13

1304009, Item 7

Product Code: 8401-EG-SAN

Reference Date:

01-Jul-2013

12:00 PM EST Grams of Master Source:

0.017994

This standard radionuclide source was prepared using aliquots measured gravimetrically from master radionuclide solutions. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using a germanium gamma spectrometer system. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST." EZA is accredited by the Health Physics Society (HPS) for the production of NIST-traceable sources, and this source was produced in accordance with the HPS accreditation requirements. Customers may report any concerns with the accreditation program to the HPS Secretariat, 1313 Dolley Madison Blvd., Ste. 402, McLean, VA 22101.

			Master			rtainty	*,%	
	Gamma-Ray	Half-Life,	Source*	This Source	Ту	pe		Calibration
Nuclide	Energy (keV)	Days	γps/gram	γps	u_{A}	$\mathbf{u}_{\mathtt{B}}$	บ	Method*
Am-241	59.5	1.580E+05	 _	2.094E+03	0.1	1.7	3.5	4π LS
Cd-109	0.88	4.626E+02	1.641E+05	2.952E+03	0.5	2.3	4.7	HPGe
Co-57	122.1	2.718E+02	8.865E+04	1.595E+03	0.4	2.0	4.1	HPGe
Ce-139	165.9	1.376E+02	1.243E+05	2.236E+03	0.4	1,9	3.9	HPGe
Hg-203	279.2	4.661E+01	2.627E+05	4.727E+03	0.3	1.9	3.8	HPGe
Sn-113	391.7	1.151E+02	1.736E+05	3.124E+03	0.4	1.9	3.9	HPGe
Cs-137	661.7	1.098E+04	1.120E+05	2.015E+03	0.7	1.9	4.0	HPGe
Y-88	898.0	1.066E+02	4.197E+05	7.553E+03	0.5	1.9	3.9	HPGe
Co-60	1173.2	1.925E+03	2,074E+05	3.732E+03	0.6	1.9	4.0	HPGe
Co-60	1332.5	1.925E+03	2.074E+05	3.732E+03	0.7	1.9	4.0	HPGe
Y-88	1836.1	1.066E+02	4.444E+05	7.996E+03	0.7	1.9	4.0	HPGe

^{*} Master Source refers to Analytics' 8-isotope mixture which is calibrated quarterly.

Calibration Methods: 4π LS - 4 pi Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber. Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results."

(Certificate continued on reverse side)

MGS Certificate Rev 4, 23 August 2012

Page 1 of 2

Eberline Analytical Oak Ridge Laboratory

Aliquot Worksheet

Printed: 3/23/2016 10:37 AM

Page 1 of 1

Work Order	Run	Analysis Code	Rpt Units	Lab Deadline	Technician
16-03102	1	Gamma	grams	4/12/2016	KSALLINGS

Auxier & Associates, Inc.	Sample	Muffle Data		Dilution Data		Aliquo	t Data	MS Aliq	uot Data	H-3 Solid	ls Only
Client ID		Ratio Post/Pre	No of Dils	Dil Factor	Ratio	Aliquot	Net Equiy	Aliquot	Net Equiv	Water Added (ml)	H3 Dist Aliq
						1.0000E+00	1.0000E+00				
						1.0000E+00	1.0000E+00				
						4.4758E+02	4,4758E+02				
						4.4758E+02	4.4758E+02				
						5.4129E+02	5.4129E+02				
						5.3601E+02	5.3601E+02				
<u> </u>											
									g de la viga de colo		
	-										
	-							***************************************			-
		DESENDEN EN SERVE EN EN EN EN EN EN EN EN EN EN EN EN EN									
				alitan (Disabah baky) (b.) Birana bakat bakat hajiy							
		Client ID Type	Ratio Type Post/Pre	Ratio No. of Dils	Ratio No of Dils Dil Factor	Ratio No. of Dils Dil Factor Ratio	Ratio No of Dils Dil Factor Ratio Aliquot	Ratio No of Dils Dil Factor Ratio Aliquot Net Equiv	Ratio Post/Pre No of Dils Dil. Factor Ratio Aliquot Net Equiv Aliquot	Ratio Post/Pre No of Dils Dil Factor Ratio Aliquot Net Equiv Aliquot Net Equiv	Ratio

*	I	 	 	
Comments				
	1		 	

Technician: Kerry Saes

Date: 3,23,16

Rough Sample Preparation Log Book

Printed: 3/23/2016 7:28 AM

Page 1 of 1

Work Order	Lab Deadline	Date Received in Prep	Date Sealed	Date Returned	Technician
16-03102	4/12/2016	3/22/2016	3/23/2016	3/24/2016	KSALLINGS

Eberline	Auxier & Associates, Inc.	Tare (g)	Gross	(g)	Net	(g)	Perce	nt	Gamı	na	Special
Fraction	Client ID	Pan Wt	Wet Wt.	Dry Wt.	Wet Wt.	Dry Wt.	Liquid	Solid	Dry Wt.	LEPS Wt.	Info
04	SEDIMENT 2016-03-16A	28.8600	1273.0600	743.5800	1244.2000	714.7200	42.56%	57.44%	0.0000	0.0000	
05	SEDIMENT 2016-03-16B	29.1400	1389.3600	944,9200	The state of the s	915.7800	32.67%	67.33%	0.0000	0.0000	
06	SEDIMENT 2016-03-16B DUP	29.0300	1180,8600	824.3000		795.2700	30.96%	69.04%	0.0000	0.0000	i
	SEDIMENT 2010-03-10B BOI		110010000								
									-		
											i
											l

Comments	
Special Codes	H: Hot, O: Organic Hazard, P: PCB Hazard, R: Rush, T: Other (see comments)

Technician: Kenysie

Analysis Report for

1603102-01

GAS-1302

4/1114

GAMMA SPECTRUM ANALYSIS

Sample Identification

Sample Description

Sample Type

Sample Size

Facility

. ..

: 7.360E+02 grams : Countroom

: 1603102-01

: GAS-1302

: SOIL

Sample Taken On Acquisition Started

: 7/1/2013 7:10:52AM : 4/11/2016 7:33:44AM

Procedure
Operator
Detector Name
Geometry

Geometry Live Time Real Time : GAS-1402 pCi : Administrator : GE2

: GAS-1402

: 1800.0 seconds : 1825.6 seconds

Dead Time

: 1.40 %

Peak Locate Threshold
Peak Locate Range (in channels)
Peak Area Range (in channels)
Identification Energy Tolerance

: 2.50 : 1 - 4096 : 5 - 4096 : 1.000 keV

Energy Calibration Used Done On Efficiency Calibration Used Done On : 11/2/2014 : 4/6/2016

Efficiency Calibration Description

.

Sample Number

: 35517

PEAK-TO-TOTAL CALIBRATION REPORT

Peak-to-Total Efficiency Calibration Equation

4/13/16

GAS-1302

PEAK LOCATE REPORT

Peak Locate Performed on

: 4/11/2016 8:04:13AM

Peak Locate From Channel

: 1 : 4096

Peak Locate To Channel Peak Search Sensitivity

: 2.50

Peak No.	Energy (keV)	Centroid Channel	Centroid Uncertainty	Peak Significance
1	12.12	12.25	0.0000	0.00
2	21.93	22.05	0.0000	0.00
3	24.91	25.03	0.0000	0.00
4	31.87	31.98	0,000	0.00
5	50.36	50.46	0.0000	0.00
6	59.17	59.27	0.0000	0.00
7	67.80	67.90	0.0000	0.00
8	85.28	85.36	0.0000	0.00
9	87.79	87.87	0.0000	0.00
10	121.83	121.89	0.0000	0.00
11	136.18	136.23	0.0000	0.00
12	165.54	165.58	0.0000	0.00
13	238.31	238.30	0.0000	0.00
14	392.07	391.99	0.0000	0.00
15	511.09	510.95	0.000	0.00
16	583.53	583.35	0.000	0.00
17	661.82	661.60	0.000	0.00
18	740.20	739.95	0.000	0.00
19	848.60	848.30	0.0000	0.00
20	1169.83	1169.40	0.0000	0.00
21	1173.82	1173.40	0.0000	0.00
22	1333.20	1332.72	0.0000	0.00
23	1666.82	1666.24	0.0000	0.00
24	1670.82	1670.24	0.0000	0.00
25	1837.28	1836.66	0.0000	0.00
26	1853.40	1852.77	0.0000	0.00
27	1866.80	1866.17	0.0000	0.00
28	1982.29	1981.64	0.0000	0.00
29	1991.93	1991.28	0.0000	0.00
30	2056.35	2055.69	0.0000	0.00
31	2110.54	2109.87	0.0000	0.00
32	2305.47	2304.77	0.0000	0.00
33	2344.44	2343.72	0.0000	0.00
34	2362.34	2361.63	0.0000	0.00
35	2369.34	2368.62	0.0000	0.00
36	2506.87	2506.14	0.000	0.00
37	2615.48	2614.74	0.0000	0.00

? = Adjacent peak noted Errors quoted at 2.000sigma Analysis Report for 1603102-01

GAS-1302

PEAK ANALYSIS REPORT

Peak Analysis Performed on

: 4/11/2016 8:04:13AM

Peak Analysis From Channel
Peak Analysis To Channel

: 1 : 4096

	Peak No.	Energy (keV)	ROI start	ROI end	Peak Centroid	Net Peak Area	Net Area Uncertainty	Continuum Counts	FWHM (keV)
-	1	12.12	10 -	15	12.25	7.21E+03	355.07	1.96E+04	1.17
М	2	21.93	19 -	28	22.05	7.97E+04	570.24	8.99E+03	1.10
m	3	24.91	19 -	28	25.03	2.72E+04	416.63	6.75E+03	1.28
	$\overset{\circ}{4}$	31.87	30 -	35	31.98	1.64E+03	243.74	1.07E+04	1.17
М	5	50.36	45 -	62	50.46	4.61E+03	305.90	1.46E+04	1.46
m	6	59.17	45 -	62	59,27	7.44E+04	638.58	1.16E+04	1.46
	7	67.80	66 -	71	67.90	6.40E+02	307.21	1.84E+04	2.86
M	8	85.28	83 –	92	85.36	8.41E+02	279.28	1.50E+04	2.36
m	9	87.79	83 -	92	87.87	2.86E+04	376.76	7.61E+03	1.03
	10	121.83	11ε -	124	121.89	5.50E+03	290.09	1.13E+04	1.10
	11	136.18	133 -	139	136.23	5.73E+02	248.02	1.08E+04	1.35
	12	165.54	163 -	169	165.58	4,92E+02	233.18	9.52E+03	1.41
	13	238.31	237 -	240	238.30	1.75E+02	145.33	5.10E+03	1.29
	14	392.07	390 -	395	391.99	2.18E+02	157.42	4.77E+03	1.96
	15	511.09	508 -	514	510.95	1.87E+02	151.65	4.04E+03	2.09
	16	583.53	581 -	586	583.35	1.21E+02	120.16	2.79E+03	2.77
	17	661.82	657 -	666	661.60	2.76E+04	375.45	4.36E+03	1.87
	18	740.20	738 -	743	739.95	1.08E+02	109.94	2.34E+03	1.65
	19	848.60	846 -	850	848.30	9.90E+01	100.46	2.15E+03	1.19
М	20	1169.83	1168 - 3	1178	1169.40	3.91E+01	35.82	4.27E+02	2.11
m	21	1173.82	1168 - 3	1178	1173.40	2.33E+04	312.79	9.41E+02	1.79
	22	1333.20	1327 - 3	1338	1332.72	2.12E+04	299.23	5.65E+02	2.01
М	23	1666.82	1665 - 1	1675	1666.24	2.65E+01	8.60	1.40E+01	2.67
m	24	1670.82	1665 - 3	1675	1670.24	2.17E+01	23.07	5.60E+01	2.68
	25	1837.28	1832 - 1	1840	1836.66	3.90E+01	32.12	1.34E+02	2.40
	26	1853.40	1842 - 1	1863	1852.77	6.05E+01	44.00	1.21E+02	17.76
	27	1866.80	1864 - 1	1870	1866.17	1.28E+01	15.17	3.43E+01	2.86
	28	1982.29	1973 - 1	1987	1981.64	4.71E+01	33.40	9.78E+01	8.69
	29	1991.93	1988 -		1991.28	1.44E+01	17.89	4.33E+01	2.36
	30	2056.35	2051 - 3	2059	2055.69	1.94E+01	19.97	4.91E+01	6.61
	31	2110.54	2107 - 3	2112	2109.87	1.47E+01	12.77	2.05E+01	1.93
	32	2305.47	2302 - 1	2308	2304.77	9.16E+00	12.23	1.97E+01	1.88
	33	2344.44	2341 -		2343.72	9.38E+C0	10.82	1.52E+01	1.52
	34	2362.34	2357 -		2361.63	8.53E+00	10.99	1.29E+01	1.67
	35	2369.34	2366 -		2368.62	9.77E+00	7.50	2.45E+00	1.18
	36	2506.87	2502 -		2506.14	2.38E+02	30.85	0.00E+00	2.37
	37	2615.48	2609 -	2619	2614.74	1.90E+01	8.72	0.00E+00	4.33

Analysis Report for

1603102-01

GAS-1302

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

PEAK ANALYSIS REPORT

Peak Analysis Performed on

: 4/11/2016 8:04:13AM

Peak Analysis From Channel

: 1

Peak Analysis To Channel

: 4096

	Peak No.	Energy (keV)	ROI siart	ROI end	Net Peak Area	Net Area Uncertainty	Continuum Counts	Critical Level
	1	12.12	10 -	15	7.21E+03	355.07	1,96E+04	2.56E+02
М	2	21.93	19 -	28	7.97E+04	570.24	8.99E+03	1.56E+02
m	3	24.91	19 -	28	2.72E+04	416.63	6.75E+03	1.35E+02
	4	31.87	30 -	35	1.64E+03	243.74	1.07E+04	1.89E+02
Μ	5	50.36	45 -	62	4.61E+03	305.90	1.46E+04	1.99E+02
m	6	59.17	45 -	62	7.44E+04	638.58	1.16E+04	1.77E+02
	7	67.80	66 -	71	6.40E+02	307.21	1.84E+04	2.49E+02
М	8	85.28	83 -	92	8.41E+02	279.28	1.50E+04	2.01E+02
m	9	87.79	83 -	92	2.86E+04	376.76	7.61E+03	1.43E+02
	10	121.83	118 -	124	5.50E+03	290.09	1.13E+04	2.05E+02
	11	136.18	133 -	139	5.73E+02	248.02	1.08E+04	2.00E+02
	12	165.54	163 -	169	4.92E+02	233.18	9.52E+03	1.88E+02
	13	238.31	237 -	240	1.75E+02	145.33	5.10E+03	1.17E+02
	14	392.07	390 -	395	2.18E+02	157.42	4.77E+03	1.27E+02
	15	511.09	508 -	514	1.87E+02	151.65	4.04E+03	1.23E+02
	16	583.53	581 -	586	1.21E+02	120.16	2.79E+03	9.71E+01
	17	661.82	657 -	666	2.76E+04	375.45	4.36E+03	1.44E+02
	18	740.20	738 -	743	1.08E+02	109.94	2.34E+03	8.87E+01
	19	848.60	846 -	850	9.90E+01	100.46	2.15E+03	8.09E+01
М	20	1169.83	1168 -	1178	3.91E+01	35.82	4.27E+02	3.40E+01
m	21	1173.82	1168 -	1178	2.33E+04	312.79	9.41E+02	5.04E+01
	22	1333.20	1327 -	1338	2.12E+04	299.23	5.65E+02	5.57E+01
М	23	1666.82	1665 -	1675	2.65E+01	8.60	1.40E+01	6.15E+00
m	24	1670.82	1665 -	1.675	2.17E+01	23.07	5.60E+01	1.23E+01
	25	1837.28	1832 -	1840	3.90E+01	32.12	1.34E+02	2.43E+01
	26	1853.40	1842 -	1863	6.05E+01	44.00	1.21E+02	3.38E+01
	27	1866.80	1864 -	1870	1.28E+01	15.17	3.43E+01	1.10E+01
	28	1982,29	1973 -	1987	4.71E+01	33.40	9.78E+01	2.50E+01
	29	1991.93	1988 -	1995	1.44E+01	17.89	4.33E+01	1.33E+01
	30	2056.35	2051 -	2059	1.94E+01	19.97	4.91E+01	1.47E+01
	31	2110.54	2107 -	2112	1.47E+01	12.77	2.05E+01	8.38E+00

Analysis Report for 1603102-01

GAS-1302

Peak	Energy	ROI	ROI	Net Peak	Net Area	Continuum	Critical
No.	(keV)	start	end	Area	Uncertainty	Counts	Level
32	2305.47	2302 -	2308	9.16E+00	12.23	1.97E+01	8.73E+00
33	2344.44	2341 -	2347	9.38E+00	10.82	1.52E+01	7.33E+00
34	2362.34	2357 -	2365	8.53E+00	10.99	1.29E+01	7.65E+00
35	2369.34	2366 -	2372	9.77E+00	7.50	2.45E+00	3.41E+00
36	2506.87	2502 -	2510	2.38E+02	30.85	0.00E+00	0.00E+00
37	2615.48	2609 -	2619	1.90E+01	8.72	0.00E+00	0.00E+00

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

PEAK WITH NID REPORT

Peak Analysis Performed on

: 4/11/2016 8:04:13AM

Peak Analysis From Channel Peak Analysis To Channel

. !

Peak Analysis to Charine

: 4096

Tentative NID Library

: \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB

Peak Match Tolerance

: 1.000 keV

	Peak No.	Energy (keV)	ROI start	ROI end	Peak Centroid	Net Peak Area	Net Area Uncertainty	Continuum Counts	Tentative Nuclide
	1	12.12	10 -	1.5	12.25	7.21E+03	355.07	1.96E+04	
М	2	21.93	19 -	28	22.05	7.97E+04	570.24	8.99E+03	
m	3	24.91	19 -	28	25.03	2.72E+04	416.63	6.75E+03	TH-231
	4	31.87	30 -	35	31.98	1.64E+03	243.74	1.07E+04	
M	5	50.36	45	62	50.46	4.61E+03	305.90	1.46E+04	TH-227 TE-132
m	6	59,17	45 -	62	59.27	7.44E+04	638.58	1.16E+04	AM-241
ш	7	67.80	66 -	71	67.90	6.40E+02	307.21	1.84E+04	TA-182 TI-44 TH-230
М	8	85,28	83 -	92	85.36	8.41E+02	279,28	1.50E+04	
m	9	87.79	83 -	92	87.87	2.36E+04	376.76	7.61E+03	SN-126 CD-109 LU-176
	10	121.83	118 -	124	121.89	5.50E+03	290.09	1.13E+04	EU-152 CO-57 SE-75
	11	136.18	133 -	139	136.23	5.73E+02	248.02	1.08E+04	SE-75 CO-57
	12	165.54	163 -	169	165.58	4.92E+02	233.18	9.52E+03	CE-139

Analysis Report for 16

1603102-01

GAS-1302

	Peak No.	Energy (keV)	ROI start	ROI end	Peak Centroid	Net Peak Area	Net Area Uncertainty	Continuum Counts	Tentative Nuclide
	13	238.31	237 -	240	238.30	1.75E+02	145.33	5.10E+03	PB-212
	14	392.07	390 -	395	391.99	2.18E+02	157.42	4.77E+03	SN-113
	15	511.09	508 -	514	510.95	1.87E+02	151.65	4.04E+03	
	16	583.53	581 -	586	583.35	1.21E+02	120.16	2.79E+03	TL-208
	17	661.82	657 -	666	661.60	2.76E+04	375.45	4.36E+03	CS-137
	18	740.20	738 -	743	739.95	1.08E+02	109.94	2.34E+03	MO-99
	19	848.60	846 -	850	848.30	9.90E+01	100.46	2.15E+03	
М	20	1169.83	1168 -	1178	1169.40	3.91E+01	35.82	4.27E+02	
m	21	1173.82	1168 -	1178	1173.40	2.33E+04	312.79	9.41E+02	CO-60
•••	22	1333.20	1327 -	1338	1332.72	2.12E+04	299.23	5.65E+02	CO-60
М	23	1666.82	1665 -	1675	1666.24	2.65E+01	8.60	1.40E+01	
m	24	1670.82	1665 -	1675	1670.24	2.17E+01	23.07	5.60E+01	
	25	1837.28	1832 -	1840	1836.66	3.90E+01	32.12	1.34E+02	
	26	1853.40	1942 -	1863	1852.77	6.05E+01	44.00	1.21E+02	
	27	1866.80	1865 -	1870	1866.17	1.28E+01	15.17	3.43E+01	
	28	1982.29	1973 -	1987	1981.64	4.71E+01	33.40	9.78E+01	
	29	1991.93	1988 -	1995	1991.28	1.44E+01	17.89	4.33E+01	
	30	2056.35	2051 -	2059	2055.69	1.94E+01	19.97	4.91E+01	
	31	2110.54	2107 -	2112	2109.87	1.47E+01	12.77	2.05E+01	
	32	2305.47	2302 -	2308	2304.77	9.16E+00	12.23	1.97E+01	
	33	2344.44	2341 -	2347	2343.72	9.38E+00	10.82	1.52E+01	
	34	2362.34	2357 -	2365	2361.63	8,53E+00	10.99	1.29E+01	
	35	2369.34	2366 -	2372	2368.62	9.77E+00	7.50	2.45E+00	
	36	2506.87	2502 -	2510	2506.14	2.38E+02	30.85	0.00E+00	
	37	2615.48	2609 -	2619	2614.74	1.90E+01	8.72	0.00E+00	TL-208

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

PEAK EFFICIENCY REPORT

Peak Analysis Performed on

: 4/11/2016 8:04:13AM

	Peak	Energy	Net Peak	Net Area	Peak	Efficiency
	No.	(keV)	Area	Uncertainty	Efficiency	Uncertainty
M m	1 2 3 4 5	12.12 21.93 24.91 31.87 50.36	7.21E+03 7.97E+04 2.72E+04 1.64E+03 4.61E+03	355.07 570.24 416.63 243.74 305.90	5.26E-06 1.23E-03 2.48E-03 6.90E-03 1.91E-02	1.66E-03 1.66E-03 1.66E-03 1.66E-03

1603102-01

GAS-1302

	Peak No.	Energy (keV)	Net Peak Area	Net Area Uncertainty	Peak Efficiency	Efficiency Uncertainty	
	_	- 0 4 5	D 445 04	C20 F0	2.26E-02	1.66E-03	
m	6	59.17	7.44E+04	638.58 307.21	2.46E-02	1.84E-03	
	7	67.80	6.40E+02	279.28	2.40E-02 2.60E-02	2.22E-03	
M	8	85.28	8.41E+02	376.76	2.60E-02 2.60E-02	2.27E-03	
m	9	87.79	2.86E+04	290.09	2.45E-02	2.26E-03	
	10	121.83	5.50E+03		2.43E-02 2.34E-02	2.32E-03	
	11	136.18	5.73E+02	248.02	2.13E-02	2.43E-03	
	12	165.54	4.92E+02	233.18	1.70E-02	2.43E-03 2.31E-03	
	13	238.31	1.75E+02	145.33	1.70E-02 1.20E-02	2.05E-03	
	14	392.07	2.18E+02	157.42		1.43E-03	
	15	511.09	1.87E+02	151.65	9.76E-03	1.06E-03	
	16	583.53	1.21E+02	120.16	8.79E-03	6.52E-04	
	17	661.82	2.76E+04	375.45	7.93E-03	7.53E-04	
	18	740.20	1.08E+02	109.94	7.24E-03	7.55E-04 8.92E-04	
	19	848.60	9.90E+01	100.46	6.46E-03	6.92E-04 4.06E-04	
M	20	1169.83	3.91E+01	35.82	4.98E-03		
m	21	1173.82	2.33E+04	312.79	4.97E-03	3.99E-04	
	22	1333.20	2.12E+04	299.23	4.51E-03	3.63E-04	
M	23	1666.82	2.65E+01	8.60	3.89E-03	3.88E-04	
m	24	1670.82	2.17E+01	23.07	3.89E-03	3.88E-04	
	25	1837.28	3.90E+01	32.12	3.70E-03	4.01E-04	
	26	1853.40	6.05E+01	44.00	3.68E-03	4.01E-04	
	27	1866.80	1.28E+01	15.17	3.67E-03	4.01E-04	
	28	1982.29	4.71E+01	33.40	3.57E-03	4.01E-04	
	29	1991.93	1.44E+01	17.89	3.57E-03	4.01E-04	
	30	2056.35	1.94E+01	19.97	3.53E-03	4.01E-04	
	31	2110.54	1.47E+01	12.77	3.50E-03	4.01E-04	
	32	2305.47	9.16E+00	12.23	3.42E-03	4.01E-04	
	33	2344.44	9.38E+00	10.82	3.41E-03	4.01E-04	
	34	2362.34	8.53E+00	10.99	3,41E-03	4.01E-04	
	35	2369.34	9.77E+00	7.50	3.41E-03	4.01E-04	
	36	2506.87	2.38E+02	30.85	3.39E-03	4.01E-04	
	37	2615.48	1.90E+01	8.72	3.40E-03	4.01E-04	

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000 sigma

BACKGROUND SUBTRACT REPORT

Peak Analysis Performed on

: 4/11/2016 8:04:13AM

Env. Background File

: \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035177.CNF

1603102-01

	Peak No.	Energy (keV)	Original Area	Orig. Area Uncertainty	Ambient Background	Backgr. Uncert.	Subtracted Area	Subtracted Uncert.
	1	12.12	7.21E+03	355.07	4.19E+02	2.00E+01	6.79E+03	3.56E+02
М	2	21.93	7.97E+04	570.24			7.97E+04	5.70E+02
m	3	24.91	2.72E+04	416.63			2.72E+04	4.17E+02
	4	31.87	1.64E+03	243.74			1.64E+03	2.44E+02
М	5	50.36	4.61E+03	305.90			4.61E+03	3.06E+02
m	6	59.17	7.44E+04	638.58			7.44E+04	6.39E+02
*	. 7	67.80	6.40E+02	307.21			6.40E+02	3.07E+02
М	8	85.28	8.41E+02	279.28		. •	8.41E+02	2.79E+02
m	9	87.79	2.86E+04	376.76	2.94E+00	4.08E+00	2.86E+04	3.77E+02
	10	121.83	5.50E+03	290.09			5.50E+03	2.90E+02
	11	136.18	5.73E+02	248.02			5.73E+02	2.48E+02
	12	165.54	4.92E+02	233.18			4.92E+02	2.33E+02
	13	238.31	1.75E+02	145.33	5.33E+00	3.43E+00	1.70E+02	1.45E+02
	14	392.07	2.18E+02	157.42			2.18E+02	1.57E+02
	15	511.09	1.87E+02	151.65	3.57E+01	2.57E+00	1.51E+02	1.52E+02
	16	583.53	1.21E+02	120.16			1.21E+02	1.20E+02
	17	661.82	2.76E+04	375.45	8.21E-01	1.60E+00	2.76E+04	3.75E+02
	18	740.20	1.08E+02	109.94			1.08E+02	1.10E+02
	19	848.60	9.90E+01	100.46			9.90E+01	1.00E+02
Μ	20	1169.83	3.91E+01	35.82			3.91E+01	3.58E+01
m	21	1173.82	2.33E+04	312.79			2.33E+04	3.13E+02
	22	1333.20	2.12E+04	299.23	2.19E+00	1.11E+00	2.12E+04	2.99E+02
М	23	1666.82	2.65E+01	8.60		*	2.65E+01	8.60E+00
m	24	1670.82	2.17E+01	23.07			2.17E+01	2.31E+01
	25	1837.28	3.90E+01	32.12			3.90E+01	3.21E+01
	26	1853.40	6.05E+01	44.00			6.05E+01	4.40E+01
	27	1866.80	1.28E+01	15.17			1.28E+01	1.52E+01
	28	1982.29	4.71E+01	33.40			4.71E+01	3.34E+01
	29	1991.93	1.44E+01	17.89			1.44E+01	1.79E+01
	30	2056.35	1.94E+01	19.97			1.94E+01	2.00E+01
	31	2110.54	1.47E+01	12.77			1.47E+01	1.28E+01
	32	2305.47	9.16E+00	12.23			9.16E+00	1.22E+01
	33	2344.44	9.38E+00	10.82			9.38E+00	1.08E+01
	34	2362.34	8.53E+00	10.99			8.53E+00	1.10E+01
	35	2369.34	9.77E+00	7.50			9.77E+00	7.50E+00
	36	2506.87	2.38E+02	30.85			2.38E+02	3.09E+01
	37	2615.48	1.90E+01	8.72			1.90E+01	8.72E+00

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

1603102-01

GAS-1302

AREA CORRECTION REPORT REFERENCE PEAK / BKG. SUBTRACT

Peak Analysis Performed on

: 4/11/2016 8:04:13AM

Ref. Peak Energy

; 0.00

Reference Date

Peak Ratio

: 0.00

Uncertainty

: 0.00

Background File

: \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035177.CNF

Corrected Area is: Original * Peak Ratio - Background

	Peak No.	Energy (keV)	Original Area	Orig. Area Uncertainty	Ambient Background	Backgr. Uncert.	Corrected Area	Corrected Uncert.
	1.	12.12	7.21E+03	355.07	4.19E+02	2.00E+01	6.79E+03	3.56E+02
М	2	21.93	7.97E+04	570.24			7.97E+04	5.70E+02
m	3	24.91	2.72E+04	416.63			2.72E+04	4.17E+02
•••	4	31.87	1.64E+03	243.74			1.64E+03	2.44E+02
M	5	50.36	4.61E+03	305.90			4.61E+03	3.06E+02
m	6	59.17	7.44E+04	638.58			7.44E+04	6.39E+02
	7	67.80	6.40E+02	307.21			6.40E+02	3.07E+02
Μ	8	85.28	8.41E+02	279.28			8.41E+02	2.79E+02
m	9	87.79	2.86E+04	376.76	2.94E+00	4.08E+00	2.86E+04	3.77E+02
	10	121.83	5.50E+03	290.09			5.50E+03	2.90E+02
	11	136.18	5.73E+02	248.02			5.73E+02	2.48E+02
	12	165.54	4.92E+02	233.18			4.92E+02	2.33E+02
	13	238.31	1.75E+02	145.33	5.33E+00	3.43E+00	1.70E+02	1.45E+02
	14	392.07	2.18E+02	157.42			2.18E+02	1.57E+02
	15	511.09	1.87E+02	151.65	3.57E+01	2.57E+00	1.51E+02	1.52E+02
	16	583.53	1.21E+02	120.16			1.21E+02	1.20E+02
	17	661.82	2.76E+04	375.45	8.21E-01	1.60E+00	2.76E+04	3.75E+02
	18	740.20	1.08E+02	109.94			1.08E+02	1.10E+02
	19	848.60	9.90E+01	100.46			9.90E+01	1.00E+02
М		1169.83	3.91E+01	35.82			3.91E+01	3.58E+01
m	21	1173.82	2.33E+04	312.79			2.33E+04	3.13E+02 2.99E+02
		1333.20	2.12E+04	299.23	2.19E+00	1.11E+00	2.12E+04	
Μ		1666.82	2.65E+01	8.60			2.65E+01	8.60E+00 2.31E+01
m		1670.82	2.17E+01	23.07			2.17E+01	3.21E+01
		1837.28	3.90E+01	32.12			3.90E+01	4.40E+01
	26	1853.40	6.05⊑+01	44.00			6.05E+01	1.52E+01
	27	1866.80	1.28E+01	15.17			1.28E+01	3.34E+01
	28	1982.29	4.71E+01	33.40			4.71E+01	1.79E+01
	29	1991.93	1.44E+01	17.89			1.44E+01	
	30	2056.35	1.94E+01	19.97			1.94E+01	2.00E+01
	31	2110.54	1.47E+01	12.77			1.47E+01	1.28E+01
	32	2305.47	9.16E+00	12.23			9.16E+00	1.22E+01
		2344.44	9.38E+00	10.82			9.38E+00	1.08E+01
	34	2362.34	8.53E+00	10.99			8.53E+00	1.10E+01
	35	2369.34	9.77E+00	7.50			9.77E+00	7.50E+00
	36	2506.87	2.38E+02	30.85			2.38E+02	3.09E+01
	37	2615.48	1.90E+01	8.72			1.90E+01	8.72E+00

1603102-01

GAS-1302

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

NUCLIDE IDENTIFICATION REPORT

Nuclide Library Used

: \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB

IDENTIFIED NUCLIDES

Nuclide Name	ld Confidence	Energy (keV)		Yield(%)	Activity (బCi/grams)	Activity Uncertainty
CO-57	0.923	122.06	*	85.51	7.20E+01	7.72E+00
		136.48	*	10.60	6.33E+01	2.82E+01
CO-60	0.931	1173.22	*	100.00	1.38E+02	1.12E+01
		1332.49	*	100.00	1.38E+02	1.13E+01
CD-109	0.967	88.03	*	3.72	2.74E+03	2.91E+02
SN-113	0.626	255.12		1.93		
ON 110	* *	391.69	*	64.90	2.58E+02	1.92E+02
SN-126	0.992	87.57	*	37.00	6.05E+01	5.33E+00
CS-137	0.996	661.65	*	85.12	8.88E+01	7.41E+00
CE-139	0.750	165.85	*	80.35	9.74E+01	4.75E+01
TL-208	0.829	583.14	*	30.22	9.30E-01	9.30E-01
11 2.00	0,025	860.37		4.48		
		2614.66	*	35.85	3.18E-01	1.51E-01
PB-212	0.879	238.63	*	44.60	4.56E-01	3.95E-01
ED-717	0.075	300.09		3.41		
AM-241	0.979	59.54	*	35.90	1.88E+02	1.40E+01

- * = Energy line found in the spectrum.
- = Manually added nuclide.
- ? = Manually edited nuclide.

Energy Tolerance: 1.000 keV

Nuclide confidence index threshold = 0.30

Errors quoted at 2.000sigma

UNIDENTIFIED PEAKS

Peak Locate Performed on

: 4/11/2016 8:04:13AM

Peak Locate From Channel
Peak Locate To Channel

: 1 : 4096

1603102-01

GAS-1302

Pe	ak No.	Energy (keV)	Peak Size (CPS)	Peak CPS (%) Uncertainty	Peak Type	Tolerance Nuclide
•	1	12.12	3.77432E+00	2.62		
M	2	21.93	4.42901E+01	0.36		
m	3	24.91	1.50919E+01	0.77	Tol.	TH-231
	4	31.87	9.13275E-01	7.41		
M	5	50.36	2.56281E+00	3.32	Tol.	TE-132
		•				TH-227
	7	67.80	3.55454E-01	24.01	Tol.	TI-44
						TA-182
				1.0.01		TH-230
M	8	85.28	4.67079E-01	16.61		
	15	511.09	8.40313E-02	50.14		
	18	740.20	5.97466E-02	51.11	Tol.	MO-99
	19	848.60	5.49972E-02	50.74		
M	20	1169.83	2.17262E-02	45.80		
M	23	1666.82	1.47056E-02	16.25		
m	24	1670.82	1.20428E-02	53.20		
	25	1837.28	2.16614E-02	41.19		
	26	1853.40	3.36226E-02	36.35		
	27	1866.80	7.12963E-03	59.12	*	
	28	1982.29	2.61603E-02	35.46		
	29	1991.93	7.97840E-03	62.28		
	30	2056.35	1.08018E-02	51.35		
	31	2110.54	8.18889E-03	43.31		
	32	2305.47	5.08772E-03	66.76		
	33	2344.44	5.21242E-03	57.64		
	34	2362.34	4.74074E-03	64.39		
	35	2369.34	5.42929E-03	38.37		
	36	2506.87	1.32222E-01	6.48	Sum	

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

NUCLIDE IDENTIFICATION REPORT

Nuclide Library Used

: \\OK GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB

IDENTIFIED NUCLIDES

1603102-01

GAS-1302

Nuclide	ld	Energy		Yield(%)	Activity	Activity	
Name	Confidence	(keV)			(pCi/grams)	Uncertainty	
CO-57	0.92	122.06	*	85.51	7.20E+01	7.72E+00	
00 0.		136.48	*	10.60	6.33E+01	2.82E+01	
CO-60	0.93	1173.22	*	100.00	1.38E+02	1.12E+01	
		1332.49	*	100.00	1.38E+02	1.13E+01	
CD-109	0.96	88.03	*	3,72	2.74E+03	2.91E+02	
SN-113	0.62	255.12		1.93			
		391.69	*	64.90	2.58E+02	1.92E+02	
SN-126	0.99	87.57	*	37.00	6.05E+01	5.33E+00	
CS-137	0.99	661.65	*	85.12	8.88E+01	7.41E+00	
CE-139	0.75	165.85	*	80.35	9.74E+01	4.75E+01	
TL-208	0.82	583.14	*	30.22	9.30E-01	9.30E-01	
		860.37		4.48			
		2614.66	*	35.85	3.18E-01	1.51E-01	
PB-212	0.87	238.63	*	44.60	4.56E-01	3.95E-01	
		300.09		3.41			
AM-241	0.97	59.54	*	35.90	1.88E+02	1.40E+01	

^{* =} Energy line found in the spectrum.

Energy Tolerance: 1.000 keV

Nuclide confidence index threshold = 0.30

Errors quoted at 2.000sigma

INTERFERENCE CORRECTED REPORT

	Nuclide Name	Nuclide Id Confidence	Wt mean Activity (pCi/grams)	Wt mean Activity Uncertainty	Comments
	CO-57	0.923	7.14E+01	7.45E+00	
	CO-60	0.931	1.38E+02	7.95E+00	
?	CD-109	0.967	2.74E+03	2.91E+02	
·	SN-113	0.626	2.58E+02	1.92E+02	
?	SN-126	0.992	6.05E+01	5.33E+00	
•	CS-137	0.996	8.88E+01	7.41E+00	
	CE-139	0.750	9.74E+01	4.75E+01	
	TL-208	0.829	3.34E-01	1.49E-01	
	PB-212	0.879	4.56E-01	3.95E-01	
	AM-241	0.979	1.88E+02	1.40E+01	

^{- =} Manually added nuclide.

^{? =} Manually edited nuclide.

^{@ =} Energy line not used for Weighted Mean Activity

1603102-01

GAS-1302

- ? = nuclide is part of an undetermined solution
- X = nuclide rejected by the interference analysis
- @ = nuclide contains energy lines not used in Weighted Mean Activity

Errors quoted at 2.000sigma

GAS-1302

UNIDENTIFIED PEAKS

Peak Locate Performed on

: 4/11/2016 8:04:13AM

Peak Locate From Channel Peak Locate To Channel : 1 : 4096

Pe	ak No.	Energy (keV)	Peak Size (CPS)	Peak CPS (%) Uncertainty	Peak Type	Tolerance Nuclide	
	1	12.12	3.77432E+00	2.62			
M	2	21.93	4.42901E+01	0.36			
m	3	24.51	1.50919E+01	0.77	Tol.	TH-231	
	4	31.87	9.13275E-01	7.41			
M	5	50.36	2.56281E+00	3.32	Tol.	TE-132	
						TH-227	
	7	67.80	3.55454E-01	24.01	Tol.	TI-44	
						TA-182	
						TH-230	
M	8	85.28	4.67079E-01	16.61			
	15	511.09	8.40313E-02	50.14			
	18	740.20	5.97466E-02	51.11	Tol.	MO-99	
	19	848.60	5.49972E-02	50.74			
М	20	1169.83	2.17262E-02	45.80			
M	23	1666.82	1.47056E-02	16.25			
m	24	1670.82	1.20428E-02	53.20			
	25	1837.28	2.16614E-02	41.19			
	26	1853.40	3.36226E-02	36.35			
	27	1866.80	7.12963E-03	59.12			
	28	1982.29	2.61603E-02	35.46			
	29	1991.93	7.97840E-03	62.28			
	30	2056.35	1.08018E-02	51.35			
	31	2110.54	8.18889E-03	43.31			
	32	2305.47	5.08772E-03	66.76			
	33	2344.44	5.21242E-03	57.64			
	34	2362.34	4.74074E-03	64.39			
	35	2369.34	5.42929E-03	38.37			
	36	2506.87	1.32222E-01	6.48	Sum		

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

GAS-1302

NUCLIDE MDA REPORT

Nuclide Name	Energy (keV)		Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)
BE-7	477.59		10.42	-4.21E+05	2.10E+06	2.10E+06
NA-22	1274.54		99.94	-4.49E-02	6.27E-01	6.27E-01
@ NA-24	1368.52		99.99	1.00E+26	1.00E+26	1.00E+26
0	2754.09		99.86	0.00E+00		1.00E+26
AL-26	1808.65		99.76	-3.05E-02	2.16E-01	2.16E-01
K-40	1460.81		10.67	-6.61E-01	1.94E+00	1.94E+00
@ AR-41	1293.64		99.16	1.00E+26	1.00E+26	1.00E+26
TI-44	67.88		94.40	1.41E-01	2.73E-01	3.02E-01
	78.34		96.00	-4.92E-02		2.73E-01
SC-46	889.25		99.98	9.49E+01	2.82E+03	2.93E+03
V-48	1120.51 983.52		99.99 99.98	-2.12E+02 -6.60E+18	4.30E+18	2.82E+03 9.01E+18
V-40	1312.10		97.50	-2.29E+18		4,30E+18
CR-51	320.08		9.83	1.72E+11	3.63E+11	3.63E+11
MN-54	834.83		99.97	3.63E+00	5.62E+00	5.62E+00
CO-56	846.75		99.96	-1.03E+03	1.98E+03	4.53E+03
	1037.75		14.03	1.78E+04		3.66E+04
	1238.25		67.00	-6.51E+02		3.80E+03
	1771.40		15.51	-2.14E+03		9.85E+03
	2598.48	.1.	16.90	2.69E+02	E 41D100	1.98E+03 5.41E+00
CO-57	122.06	*	85.51	7.20E+01	5.41E+00	4.45E+01
GO F.0	136.48	*	10.60 99.40	6.33E+01 1.44E+03	1.18E+04	1.18E+04
CO-58	810.76		56.50	9.16E+05	4.65E+06	8.86E+06
FE-59	1099.22 1291.56		43.20	-1.82E+05	4.030100	4.65E+06
CO-60	1173.22	*	100.00	1.38E+02	7.44E-01	1.14E+00
00 00	1332.49	*	100.00	1.38E+02		7.44E-01
ZN-65	1115.52		50.75	3.63E+01	2.47E+01	2.47E+01
@ GA-67	93.31		35.70	1.00E+26	1.00E+26	1.00E+26
@	208.95		2.24	1.00E+26		1.00E+26
@	300.22		16.00	1.00E+26	•	1.00E+26
SE-75	121.11		16.70	9.76E+03	1.63E+02	8.10E+02
	136.00		59.20	3.27E+02	•	1.63E+02
	264.65		59.80	6.42E+01 -1.02E+02		1.88E+02 4.49E+02
	279.53 400.65		25.20 11.40	-3.75E+01		1.18E+03
RB-82	776.52		13.00	6.37E+11	3.73E+12	3.73E+12
RB-83	520.41		46.00	-5.36E+02		2.87E+03
	529.64		30.30	7.91E+02		4.43E+03

1603102-01

	Nuclide Name	Energy (keV)		Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
	KR-85	513.99		0.43	-6.23E+00	1.05E+02	1.05E+02	
+		513.99		99.27	-1.17E+03	1.99E+04	1.99E+04	
+	SR-85			93.40	1.63E+02	2.09E+02	5.48E+02	
÷	Y-88	898.02			2.36E+02	2.035102	2.09E+02	
	NED COM	1836.01 16.57		99.38 9.43	1.35E+03	5.54E+02	5.54E+02	
+	NB-93M	702.63		100.00	2.63E-02	4.79E-01	4.79E-01	
+	NB-94			100.00	2.26E-02	4.750 01	6.25E-01	
+	NB-95	871.10 765.79		99.81	6.10E÷07	2.72E+08	2.72E+08	
	@ NB-95M	235.69		25.00	1.00E+26	1.00E+26	1.00E+26	
+		724.18		43.70	7.54E+03	5.41E+04	6.62E+04	
+	ZR-95			55.30	5.01E+03	J.4ILF.C	5.41E+04	
+	@ MO-99	756.72 181.06		6.20	1.00E+26	1.00E+26	1.00E+26	
т		739.58		12.80	1.00E+26	2.001,20	1.00E+26	
	@ @	778.00		4.50	1.00E+26	•	1.00E+26	
+	RU-103	497.08		89.00	-1.57E+06	2.54E+07	2.54E+07	
+	RU-106	621.84		9.80	2.23E+01	3.24E+01	3.24E+01	
	AG-108M	433.93		89.90	2.09E-01	4.56E-01	4.56E-01	
+	AG-100M	614.37		90.40	-4.20E-01	1.002 01	5.13E-01	
		722.95		90.50	8.90E02		5.48E-01	
+	CD-109	88.03	*	3.72	2.74E+03	5.89E+01	5.89E+01	
+	AG-110M	657.75		93.14	7.59E-01	1.53E+01	2.49E+01	
		677.61		10.53	4.41E+01		7.51E+01	
		706.67		16.46	1.12E+01		4.85E+01	
		763.93		21.98	-1.65E+01		3.93E+01	
		884.67		71.63	1.83E+00		1.54E+01	
	4404	1384.27		23.94	5.02E+00	1.58E+03	1.53E+01 1.58E+03	
+	CD-113M			0.02	-9.39E+00		7.59E+03	
+	SN-113	255.12		1.93	5.23E+03	3.05E+02		
	mm	391.69	*	64.90	2.58E+02 4.98E+01	1.11E+02	3.05E+02 1.11E+02	
+	TE123M	159.00		84.10		4.65E+04	5.64E+04	
+	SB-124	602.71		97.87	2.41E+04	4.056+04	7.89E+05	
		645.85 722.78		7.26 11.10	-1.46E+04 8.51E+04		5.23E+05	
	•	1691.02		49.00	-1.83E+04		4.65E+04	
+	I-125	35.49		6.49	1.32E+06	1.02E+06	i.02E+06	
+	SB-125	176.33		6.89	3.72E+00	2.71E+00	7.98E+00	
•	00 120	427.89		29.33	-4.52E-01		2.71E+00	
		463.38		10.35	2.69E+00		8.65E+00	
		600.56		17.80	1.14E+00		5.18E+00	
		635.90		11.32	4.63E+00		8,55E+00	
+	@ SB-126	414.70		83.30	1.00E+26	1.00E+26	1.00E+26	
	0	666.33		99.60	1.00E+26		1.00E+26	
	@	695.00		99.60	1.00E+26		1.00E+26	
	@ @	720.50	-1-	53.80	1.00E+26	1 205:00	1.00E+26 1.30E+00	
+	SN-126	87.57	*	37.00	6.05E+01	1.30E+00		
+	@ SB-127	473.00		25.00	1.00E+26	1.00E+26	1.00E+26	
	@	685.20		35.70	1.00E+26		1.00E+26	

	Nuclide Name	Energy (keV)		Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
	@ SB-127	783.80		14.70	1.00E+26	1.00E+26	1.00E+26	-
+	I-129	29.78		57.00	-1.75E+01	1.57E+00	1,57E+00	
•	1 123	33.60		13.20	-3.30E+01		4.69E+00	
		39.58		7.52	-9.30E+00		5.93E+00	
+	@ I-131	284.30		6.05	1.00E+26	1.00E+26	1.00E+26	
	@	364.48		81.20	1.00E+26		1.00E+26	
	<u>@</u>	636.97		7.26	1.00E+26		1.00E+26	
	@	722.89		1.80	1.00E+26		1.00E+26	
+	@ TE-132	49.72		13.10	1.00E+26	1.00E+26	1.00E+26	
	@	228.16		88.00	1.00E+26		1.00E+26	
+	BA-133	81.00		33.00	2.73E-01	7.02E-01	9.30E-01	
		302.84		17.80	-2.51E-01		2.20E+00	
		356.01		60.00	9.76E-02		7.02E-01	
+	0 I-133	529.87		86.30	1.00E+26	1.00E+26	1.00E+26	
+	@ XE-133	81.00		38.00	1.00E+26	1.00E+26	1.00E+26	•
+	CS-134	563.23		8.38	-4.66E+00	1.20E+00	1.13E+01	
		569.32		15.43	-8.47E-01		6.20E+00	
		604.70		97.60	-8.39E-01		1.20E+00	
		795.84		85.40	1.65E+00		1.68E+00 1.58E+01	
	90 105	801.93		8.73 16.00	-1.03E+01 -8.85E-01	1.97E+00	1.97E+00	
+	CS-135	268.24			1.00E+26	1.00E+26	1.00E+26	
+	@ I-135	1131.51		22.50		1.005+20	1.00E+26	
	@	1260.41		28.60	1.00E+26 1.00E+26		1.00E+26	
	0 0 CC 136	1678.03		9.54 7.46	1.00E+26	1.00E+26	1.00E+26	
+	@ CS-136	153.22		4.61	1.00E+26	1.000.20	1.00E+26	
	<u>@</u>	163.89 176.55		13.56	1.00E+26		1.00E+26	
	<u>@</u>	273.65		12.66	1.00E+26		1.00E+26	
	@	340.57		48.50	1.00E+26		1.00E+26	
	<u>@</u>	818.50		99.70	1.00E+26		1.00E+26	
	<u>e</u>	1048.07		79.60	1.00E+26		1.00E+26	
	<u> </u>	1235.34		19.70	1.00E+26		1.00E+26	
+	CS-137	661.65	*	85.12	8.88E+01	9.37E-01	9.37E-01	
+	LA-138	788.74		34.00	5.97E-01	3.03E-01	1.60E+00	
		1435.80		66.00	7.59E-02		3.03E-01	
+	CE-139	165.85	*	80.35	9.74E+01	7.51E+01	7.51E+01	
+	@ BA-140	162.64		6.70	1.00E+26	1.00E+26	1.00E+26	
	@	304.84		4.50	1.00E+26		1.00E+26	
	@	423.70		3.20	1.00E+26		1.00E+26	
	@	437.55		2.00	1.00E+26		1.00E+26	
	@	537.32		25.00	1.00E+26		1.00E+26	
+	@ LA-140	328.77		20.50	1.00E+26		1.00E+26	
	@	487.03		45.50	1.00E+26		1.00E+26	
	0	815.85		23.50	1.00E+26		1.00E+26	
	@ GE 141	1596.49		95.49	1.00E+26		1.00E+26 1.32E+09	
+	CE-141	145.44	•	48.40	5.42E+08		1.00E+26	
+	@ CE-143	57.36		11.80	1.00E+26		1.00E+26	
	0	293.26		42.00	1.00E+26		1.005720	

	Nuclide Name	Energy (keV)	Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
·····	@ CE-143	664.55	5.20	1.00E+26	1.00E+26	1.00E+26	
+	CE-144	133.54	10.80	4.00E-01	2.93E+01	2.93E+01	
+	PM-144	476.78	42.00	-1.39E+00	3.23E+00	6.91E+00	
•	111 111	618.01	98.60	-9.45E-01		3.23E+00	
		696.49	99.49	1.53E-01		3.31E+00	
+	PM-145	36.85	21.70	3.25E+00	1.39E+00	2.64E+00	
		37.36	39.70	1.72E+00		1.39E+00	
		42.30	15.10	-4.83E+00		3.23E+00	
		72.40	2.31	5.96E+00	1 507,00	1.26E+01	
+	PM-146	453.90	39.94	-2.49E-01	1.52E+00	1.52E+00	
		735.90	14.01	-7.88E-01		5.09E+00 5.50E+00	
	A 270 147	747.13	13:10 28.90	1.35E+00 1.00E+26	1.00E+26	1.00E+26	
+	@ ND-147	91.11		1.00E+26	1.000.20	1.00E+26	
	0 0 DM 140	531.02 285.90	13.10 3.10	1.00E+26	1.00E+26	1.00E+26	
+	@ PM-149	121.78	20.50	2.50E+01	1.61E+00	2.12E+00	
+	EU-152		5.40	-3.65E+00	1.010,00	6.84E+00	
		244.69 344.27	19.13	3.23E-01		2.06E+00	
		778.89	9.20	-2.68E-02		6.60E+00	•
		964.01	10.40	-1.18E-01		8,18E+00	
		1085.78	7.22	3.33E+00		1.13E+01	
		1112.02	9.60	2.48E+00		8.51E+00	
		1407.95	14.94	5.58E-01	400.01	1.61E+00	
+	GD-153	97.43	31.30	5.84E+00	1.40E+01	1.40E+01	
		103.18	22.20	-6.93E+00	1.05E+00	1.98E+01 1.16E+00	
+	EU-154	123.07	40.50	1.33E+01	1.055+00	3.08E+00	
		723.30	19.70 11.50	5.02E-01 -2.18E+00		6.78E+00	
		873.19 996.32	10.30	-2.16E+00	•	8.09E+00	
		1004.76	17.90	4.31E-01		4.69E+00	
		1274.45	35.50	-7.50E-02		1.05E+00	
+	EU-155	86.50	30.90	1.10E+02	1.72E+00	3.32E+00	
		105.30	20.70	-6.69E-01		1.72E+00	
+	@ EU-156	811.77	10.40	1.00E+26	1.00E+26	1.00E+26	
	@	1153.47	7.20	1.00E+26		1.00E+26	
	0	1230.71	8.90	1.00E+26		1.00E+26	
+	HO-166M	the state of the s	72.60	8.73E-02	3.94E-01	3.94E-01	
		280.45	29.60	-2.44E-01		1.08E+00	
		410.94	11.10	1.34E+00		3.49E+00 8.65E-01	
	mv 171	711.69 66.72	54.10 0.14	-6.38E-01 5.35E+02	5.40E+02	5.40E+02	
+	TM-171		4.52	-2.92E-01	6.08E+00	1.58E+01	
+	HF-172	81.75	11.30	-7.69E-01	0.005.00	6.08E+00	•
+	@ LU-172	125.81 181.53	20.60	1.00E+26	1.00E+26	1.00E+26	
7		810.06	16.63	1.00E+26	2.002.20	1.00E+26	
	@ @	912.12	15.25	1.00E+26		1.00E+26	
	<u>@</u>	1093.66	62.50	1.00E+26		1,00E+26	
+	LU-173	100.72	5.24	1.30E+00	6.23E+00	1.87E+01	
•	20 1.0	272.11	21.20	6.85E-01		6.23E+00	
		,,_					

	Nuclide Name	Energy (keV)		Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
		(,,,,,	·····					
+	HF-175	343.40		84.00	-5.79E+03	9.39E+03	9.39E+03	
+	LU-176	88.34		13.30	1.74E+02	3.42E-01	5.17E+00	
		201.83		86.00	-6.24E-02		3.42E-01	
		306.78		94.00	2.09E-02		3.53E-01	
+	TA-182	67.75		41.20	1.47E+02	3.14E+02	3.14E+02	
		1121.30		34.90	-1.25E+02	-	8.43E+02 1.31E+03	
		1189.05		16.23 26.98	-7.99E+01 -1.39E+02		6.53E+02	
		1221.41 1231.02		11.44	1.58E+02		1.48E+03	
+	IR-192	308.46		29.68	-1.08E+04	1.24E+04	1.50E+04	
		468.07		48.10	-1.73E+02		1.24E+04	
+	HG-203	279.19		77.30	3.22E+04	1.48E+06	1.48E+06	
+	BI-207	569.67		97.72	-5.57E-02	4.08E-01	4.08E-01	
		1063.62		74.90	1.27E-01		9.65E-01	
+	TL-208	583.14	*	30.22	9.30E-01	4.53E-02	1.51E+00	
		860.37	.1.	4.48	1.56E+00		1.39E+01 4.53E-02	
	BI-210M	2614.66 262.00	*	35.85 45.00	3.18E-01 -1.74E-01	7.12E-01	7.12E-01	
+	PI-SIOM	300.00		23.00	1.17E+00		1.43E+00	
+	PB-210	46.50		4.25	-8.04E+01	1.28E+01	1.28E+01	
+	PB-211	404.84		2.90	2.78E±00	1.32E+01	1.32E+01	
·		831.96		2.90	6.66E+00		2.02E+01	
+	BI-212	727.17		11.80	-3.68E-01	4.12E+00	4.12E+00	
		1620.62		2.75	-2.47E-01		7.43E+00	
+	PB-212	238.63	*	44.60	4.56E-01	6.39E-01	6.39E-01	
	014	300.09		3.41	7.88E+00	1.02E+00	9.63E+00 1.02E+00	
+	BI-214	609.31		46.30	5.82E-01 -3.18E-01	1.025400	4.24E+00	
		1120.29 1764.49		15.10 15.80	1.15E+00		1.39E+00	
		2204.22		4.98	8.11E-01		3.86E+00	
+	PB-214	295.21		19.19	-5.76E-01	9.51E-01	1.69E+00	
		351.92		37.19	-3.94E-02		9.51E-01	
+	RN-219	401.80		6.50	-1.49E+00	5.80E+00	5.80E+00	
+	RA-223	323.87		3.88	-6.16E+00	8.53E+00	8.53E+00	
+	RA-224	240.98		3.95	3.18E+00	8.28E+00	8.28E+00	
+	@ RA-225	40.00		31.00	1.00E+26	1.00E+26	1.00E+26	
+	RA-226	186.21		3.28	-3.27E+00	8.80E+00	8.80E+00	
+	TH-227	50.10		8.40	2.70E+01	2.86E+00	7.06E+00 2.86E+00	
		236.00		11.50	1.55E+00 1.37E+00		5.18E+00	
1	AC-228	256.20 338.32		6.30 11.40	1.64E+00	2.56E+00	3.06E+00	
+	AC-220	911.07		27.70	1,25E+00		2.56E+00	
		969.11		16.60	-1.02E+00		4.15E+00	
+	TH-230	48.44		16.90	1.08E+01	3.52E+00	3.52E+00	
		62.85		4,60	-3.88E+00		5.31E+00	
		67.67		0.37	3.50E+01	1 400.01	7.48E+01 2.04E+01	
+	PA-231	283.67		1.60	1.91E+01	1.42E+01	1.42E+01	
		302.67		2.30	-1.61E+00		T.47DTVI	

1603102-01

GAS-1302

	Nuclide Name	Energy (keV)		Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
+	TH-231	25.64		14.70	1.14E+03	4.11E+00	3.67E+01	
		84.21		6.40	-3.07E-03		4.11E+00	
+	PA-233	311.98		38.60	1.40E+11	1.78E+11	1.78E+11	
+	PA-234	131.20		20.40	-2.39E-01	1.23E+00	1.23E+00	
·		733.99 946.00		8.80 12.00	-2.16E+00 -2.15E+00		5.61E+00 6.30E+00	
+	PA-234M	1001.03		.0.92	1.12E+01	7.30E+01	7.30E+01	
+	TH-234	63.29		3.80	-4.68E+00	6.40E+00	6.40E+00	
+	U-235	143.76		10.50	1.69E-01	2.41E+00	2.41E+00	
		163.35 205.31		4.70 4.70	-1.34E+00 1.87E+00	E E3E1100	5.70E+00 6.39E+00 5.53E+00	
+	NP-237	86.50		12.60	1.84E+02	5.53E+00		
+	@ NP-239 @ @	106.10 228.18 277.60		22.70 10.70 14.10	1.00E+26 1.00E+26 1.00E+26	1.00E+26	1.00E+26 1.00E+26 1.00E+26	
+	AM-241	59.54	*	35.90	1.88E+02	3.02E+00	3.02E+00	
+	AM-243	74.67		66.00	-1.27E-01	3.90E-01	3.90E-01	
+	CM-243	209.75		3.29	-1.92E+00	2.43E+00	1.01E+01	
		228.14 277.60		10.60 14.00	2.41E-01 5.54E-01		3.27E+00 2.43E+00	

- + = Nuclide identified during the nuclide identification
- * = Energy line found in the spectrum
- > = MDA value not calcula ad
- @ = Half-life too short to be able to perform the decay correction
- ? = CAUTION: MDA value is inconsistent with Currie MDA at 95% confidence level

NUCLIDE MDA REPORT

Nuclide Library Used : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB

Nuclide Name	Energy (keV)	Yield(%)	Line MDA (pCi/grams)	Nuclide MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
 BE-7	477.59	10.42	2.10E+06	2.10E+06	-4.21E+05	1.03E+06

	Nuclide Name	Energy (keV)	Yield(%)	Line MDA (pCi/grams)	Nuclide MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
	NA-22	1274.54	99.94	6.27E-01	6.27E-01	-4.49E-02	3.01E-01
a	NA-24	1368.53	99.99	1.00E+26	1.00E+26	1.00E+26	1.00E+20
6		2754.09	99.86	1.00E+26		0.00E+00	1.00E+20
C	AL-26	1808.65	99.76	2.16E-01	2.16E-01	-3.05E-02	1.01E-01
	K-40	1460.81	10.67	1.94E+00	1.94E+00	-6.61E-01	9.10E-01
a	AR-41	1293.64	99.16	1.00E+26	1.00E+26	1.00E+26	1.00E+20
•	TI-44	67.88	94.40	3.02E-01	2.73E-01	1.41E-01	1.50E-01
		78.34	96.00	2.73E-01		-4.92E-02	1.36E-01
	SC-46	889.25	99.98	2.93E+03	2.82E+03	9.49E+01	1.45E+03
		1120.51	99.99	2.82E+03		-2.12E+02	1.39E+03
	V-48	983.52	99.98	9.01E+18	4.30E+18	-6.60E+18	4.44E+18
		1312.10	97.50	4.30E+18		-2.29E+18	2.07E+18
	CR-51	320.08	9.83	3.63E+11	3.63E+11	1.72E+11	1.79E+11
	MN-54	834.83	99.97	5.62E+00	5.62E+00	3.63E+00	2.77E+00
	CO-56	846.75	99.96	4.53E+03	1.98E+03	-1.03E+03	2.23E+03 1.80E+04
		1037.75	14.03	3.66E+04		1.78E+04	1.83E+03
		1238.25	67.00	3.80E+03		-6.51E+02 -2.14E+03	4.57E+03
		1771.40	15.51	9.85E+03		2.69E+02	6.27E+02
		2598.48	16.90	1.98E+03	E 4112.00	7.20E+01	2.69E+00
+	CO-57	122.06 *	85.51	5.41E+00	5.41E+00	6.33E+01	2.21E+01
		135.48 *	10.60	4.45E+01	1.18E+04	1.44E+03	5.79E+03
	CO-58	810.76	99.40	1.18E+04	4.65E+06	9.16E+05	4.36E+06
	FE-59	1099.32	56.50	8.86E+06 4.65E+06	4.005100	-1.82E+05	2.23E+06
	aa 60	1291.50 ×	43.20 100.00	1.14E+00	7.44E-01	1.38E+02	5.62E-01
+	CO-60	1173.22 * 1332.49 *	100.00	7.44E-01	TO der.	1.38E+02	3.63E-01
	DN CE	1115.52	50.75	2.47E+01	2.47E+01	3.63E+01	1.22E+01
	ZN-65 GA-67	93.31	35.70	1.00E+26	1.00E+26	1.00E+26	1.00E+20
		208.95	2.24	1.00E+26	1,002.20	1.00E+26	1.00E+20
(3	300.22	16.00	1.00E+26		1.00E+26	1.00E+20
,	se-75	121.11	16.70	8.10E+02	1.63E+02	9.76E+03	4.02E+02
	5 <u>5</u> 75	136.00	59.20	1.63E+02		3.27E+02	8.10E+01
		264.65	59.80	1.88E+02		6.42E+01	9.30E+01
		279.53	25.20	4.49E+02		-1.02E+02	2,22E+02
		400.65	11.40	1.18E+03		-3.75E+01	5.82E+02
	RB-82	776.52	13.00	3.73E+12	3.73E+12	6.37E+11	1.84E+12
	RB-83	520.41	46.00	2.87E+03	2.87E+03	-5.36E+02	1.41E+03
		529.64	30.30	4.43E+03		7.91E+02	2.18E+03
		552.65	16.40	7.93E+03		1.01E+02	3.90E+03
	KR-85	513.99	0.43	1.05E+02	1.05E+02	-6.23E+00	5.20E+01
	SR-85	513.99	99.27	1.99E+04	1.99E+04	-1.17E+03	9.79E+03
	Y-88	893.02	93.40	5,48E+02	2.09E+02	1.63E+02	2.70E+02
		1836.01	99.38	2.09E+02	4 00	2.36E+02	9.91E+01 2.75E+02
	NB-93M	16.57	9.43	5.54E+02	5.54E+02	1.35E+03	2.75E+02 2.36E-01
	NB-94	702.63	100.00	4.79E-01	4.79E-01	2.63E-02	3.08E-01
		871.10	100.00	6.25E-01	0 505+00	2.26E-02 6.10E+07	1.34E+08
	NB-95	765.79	99.81	2.72E+08	2.72E+08	1.00E+26	1.00E+20
	@ NB-95M	235.69	25.00	1.00E+26	1.00E+26 5.41E+04	7.54E+03	3.26E+04
	ZR-95	724.18	43.70	6.62E+04	J.4151V4	5.01E+03	2.66E+04
	0	756.72	55.30	5,41E+04 1.00E+26	1.00E+26	1.00E+26	1.00E+20
	@ MO-99	181.06	6.20	1.00E+26 1.00E+26	I.UUETZ0	1.00E+26	1.00E+20
	@	739.58	12.80	1.00E+26		1.00E+26	1.00E+20
	@	778.00	4.50	1.00£720		1.001.20	

1603102-01

		•		وفصوت والمداد		A. C. S. Sama	A411 .141 .	Dec. Level
	Nuclide	Energy		Yield(%)	Line MDA	Nuclide MDA	Activity	
	Name	(keV)		:	(pCi/grams)	(pCi/grams)	(pCi/grams)	(pCi/grams)
****	RU-103	497.08		89.00	2.54E+07	2.54E+07	-1.57E+06	1.25E+07
	RU-106	621.84		9.80	3.24E+01	3.24E+01	2.23E+01	1.60E+01
	AG-108M	433.93		89.90	4.56E-01	4.56E-01	2.09E-01	2.25E-01
		614.37		90.40	5.13E-01		-4.20E-01	2.53E-01
		722.95		90.50	5.48E-01		8.90E-02	2.70E-01
+	CD-109		*	3.72	5.89E+01	5.89E+01	2.74E+03	2.93E+01
	AG-110M	657.75		93.14	2.49E+01	1.53E+01	7.59E-01	1.24E+01
		677.61		10.53	7.51E+01		4.41E+01	3.70E+01
		706.67		16.46	4.85E+01		1.12E+01	2.39E+01
		763.93		21.98	3.93E+01		-1.65E+01	1.93E+01
		884.67		71.63	1.54E+01		1.83E+00	7.62E+00
		1384.27		23.94	1.53E+01	•	5.02E+00	7.23E+00
	CD-113M	263.70		0.02	1.58E+03	1.58E+03	-9.39E+00	7.82E+02
+	SN-113	255.12		1.93	7.59E+03	3.05E+02	5.23E+03	3.76E+03
•	011 110		*	64.90	3.05E+02		2.58E+02	1.51E+02
	TE123M	159.00		84.10	1.11E+02	1.11E+02	4.98E+01	5.47E+01
	SB-124	602.71		97.87	5.64E+04	4.65E+04	2.41E+04	2.78E+04
	DD 124	645.85		7.26	7.89E+05		-1.46E+04	3.89E+05
		722.78		11.10	5.23E+05		8.51E+04	2.58E+05
		1691.02		49.00	4.65E+04		-1.83E+04	2.15E+04
	I-125	35.49		6.49	1.02E+06	1.02E+06	1.32E+06	5.05E+05
	SB-125	176.33		6.83	7.98E+00	2.71E+00	3.72E+00	3.95E+00
	3B-123	427.89		29.33	2.71E+00		-4.52E-01	1.34E+00
		463.38		10.35	8.65E+00		2.69E+00	4.28E+00
		600.56		17.80	5.18E+00		1.14E+00	2.55E+00
		635.90		11.32	8.55E+00		4.63E+00	4.21E+00
	@ SB-126	414.70		83.30	1.00E+26	1.00E+26	1.00E+26	1.00E+20
		666.33		99.60	1.00E+26	2.00	1.00E+26	1.00E+20
	@ @	695.00		99.60	1.00E+26		1.00E+26	1.00E+20
	<u>e</u>	720.50		53.80	1.00E+26		1.00E+26	1.00E+20
+	SN-126	87.57	*	37.00	1.30E+00	1.30E+00	6.05E+01	6.47E-01
7		473.00		25.00	1.00E+26	1.00E+26	1.00E+26	1.00E+20
		685.20		35.70	1.00E+26	1.002.20	1.00E+26	1.00E+20
	@ @	783.80		14.70	1.00E+26		1.00E+26	1.00E+20
		29.78		57.00	1.57E+00	1.57E+00	-1.75E+01	7.78E-01
	I-129	33.60		13.20	4.69E+00	1.0,2.00	-3.30E+01	2.32E+00
		39.58		7.52	5.93E+00		-9.30E+00	2.94E+00
	A T 101	284.30		6.05	1.00E+26	1.00E+26	1.00E+26	1.00E+20
	@ I-131	364.48		81.20	1.00E+26	1.001.20	1.00E+26	1.00E+20
	@ @			7.26	1.00E+26		1.00E+26	1.00E+20
	6	636.97		1.80	1.00E+26		1.00E+26	1.00E+20
	0 0 mm 130	722.89		13.10	1.00E+26	1.00E+26	1.00E+26	1.00E+20
	@ TE-132	49.72		88.00	1.00E+26	1.001120	1.00E+26	1.00E+20
	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	228.16		33.00	9.30E-01	7.02E-01	2.73E-01	4.61E-01
	BA-133	81.00			2.20E+00	7.025-01	-2.51E-01	1.09E+00
		302.84		17.80	7.02E-01		9.76E-02	3.47E-01
	0 T 100	356.01		60.00	1.00E+26	1.00E+26	1.00E+26	1.00E+20
	@ I-133	529.87		86.30		1.00E+26	1.00E+26	1.00E+20
	@ XE-133	81.00		38.00	1.00E+26	1.00E+26 1.20E+00	-4.66E+00	5.55E+00
	CS-134	563.23		8.38	1.13E+01	1,205700	-8.47E-01	3.05E+00
		569.32		15.43	6.20E+00		-8.47E-01 -8.39E-01	5.93E-01
		604.70		97.60	1.20E+00		1.65E+00	8.30E-01
	•	795.84		85.40	1.68E+00	•	-1.03E+01	7.80E+00
		801.93		8.73	1.58E+01		-1,036+01	7.002100

Nuc Nan		Energy (keV)	Y	ield(%)	Line MDA (pCi/grams)	Nuclide MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
CS-	135	268.24		16.00	1,97E+00	1.97E+00	-8.85E-01	9.75E-01
@ I-1		1131.51		22.50	1.00E+26	1.00E+26	1.00E+26	1.00E+20
6	50	1260.41		28.60	1.00E+26		1.00E+26	1.00E+20
@		1678.03		9.54	1.00E+26		1.00E+26	1.00E+20
	136	153.22		7.46	1.00E+26	1.00E+26	1.00E+26	1.00E+20
0		163.89		4.61	1.00E+26	•	1.00E+26	1.00E+20
<u>@</u>		176.55		13.56	1.00E+26		1.00E+26	1.00E+20
@ @		273.65		12.66	1.00E+26		1.00E+26	1.00E+20
@		340.57		48.50	1.00E+26		1.00E+26	1.00E+20
@ @		818.50		99.70	1.00E+26		1.00E+26	1.00E+20
@		1048.07		79.60	1.00E+26		1.00E+26	1.00E+20
<u>e</u>		1235.34		19.70	1.00E+26		1.00E+26	1.00E+20
+ CS-	·137	661.65	*	85.12	9.37E-01	9.37E-01	8.88E+01	4.64E-01
LA-	138	788.74		34.00	1.60E+00	3.03E-01	5.97E-01	7.89E-01
		1435.80		66.00	3.03E-01		7.59E-02	1.42E-01
	·139	165.85	*	80.35	7.515+01	7.51E+01	9.74E+01	3.73E+01
@ BA-	-140	162.64		6.70	1.00E+26	1.00E+26	1.00E+26	1.00E+20
@		304.84		4.50	1.00E+26		1.00E+26	1.00E+20
@		423.70		3.20	1.00E+26		1.00E+26	1.00E+20 1.00E+20
@		437.55		2.00	1.00E+26		1.00E+26	1.00E+20 1.00E+20
@ .		537.32		25.00	1.00E+26	1 000.00	1.00E+26	1.00E+20 1.00E+20
	-140	328.77		20.50	1.00E+26	1.00E+26	1.00E+26 1.00E+26	1.00E+20
@ @ @		487.03		45.50	1.00E+26		1.00E+26	1.00E+20
@		815.85		23.50	1.00E+26		1.00E+26	1.00E+20
•		1596.49		95.49	1.00E+26 1.32E+09	1.32E+09	5.42E+08	6.55E+08
	-141	145.44		48.40	1.00E+26	1.00E+26	1.00E+26	1.00E+20
	-143	57.36		11.80 42.00	1.00E+26	1.0015120	1.00E+26	1.00E+20
0		293.26		5,20	1.00E+26		1.00E+26	1.00E+20
(e	1 1 1	664.55 133.54		10.80	2.93E+01	2.93E+01	4.00E-01	1.45E+01
	-144 -144	476.78		42.00	6.91E+00	3.23E+00	-1.39E+00	3.41E+00
PM-	-144	618.01		98.60	3.23E+00	3.202,00	-9.45E-01	1.59E+00
		696.49		99.49	3.31E+00		1.53E-01	1.63E+00
-Ma	-145	36.85		21.70	2.64E+00	1.39E+00	3.25E+00	1.30E+00
F 14	-143	37.36		39.70	1.39E+00	_,	1.72E+00	6.88E-01
		42.30		15.10	3.23E+00		-4.83E+00	1.60E+00
		72.40		2.31	1.26E+01		5.96E+00	6.25E+00
PM-	-146	453.90		39.94	1.52E+00		-2.49E-01	7.49E-01
		735.90		14.01	5.09E+00		-7.88E-01	2.51E+00
		747.13	**	13.10	5.50E+00	*	1.35E+00	2.71E+00
@ ND-	-147	91.11		28.90	1.00E+26	1.00E+26	1.00E+26	1.00E+20
@		531.02		13.10	1.00E+26		1.00E+26	1.00E+20
@ PM·	-149	285.90	•	3.10	1.00E+26	1.00E+26	1.00E+26	1.00E+20
	-152	121.78		20.50	2.12E+00	1.61E+00	2.50E+01	1.06E+00
		244.69		5.40	6.84E+00		-3.65E+00	3.38E+00
		344.27		19.13	2.06E+00		3.23E-01	1.02E+00
		778.89		9.20	6.60E+00		-2.68E-02	3.25E+00
		964.01		10.40	8.18E+00		-1.18E-01	4.04E+00
		1085.78		7.22	1.13E+01		3.33E+00	5.55E+00
		1112.02		9.60	8.51E+00		2.48E+00	4,19E+00
		1407.95		14.94	1.61E+00		5.58E-01	7.54E-01
GD:	-153	97.43		31.30			5.84E+00	6.93E+00 9.83E+00
		103.18		22.20	1.98E+01	; .	-6.93E+00	9.03E+UU

1603102-01

	Nuclide Name	Energy (keV)		Yield(%)	Line MDA (pCi/grams)	Nuclide MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
	EU-154	123,07	•	40.50	1.16E+00	1.05E+00	1.33E+01	5.76E-01
		723.30		19.70	3.08E+00	•	5.02E-01	1.52E+00
		873.19		11.50	6.78E+00		-2.18E+00	3.34E+00
		996.32		10.30	8.09E+00		-2.57E+00	3.98E+00
		1004.76		17.90	4.69E+00	. ,	4.31E-01	2.31E+00
		1274.45		35.50	1.05E+00		-7.50E-02	5.03E-01
	EU-155	86.50		30.90	3.32E+00	1.72E+00	1.10E+02	1.66E+00
		105.30		20.70	1.72E+00		-6.69E-01	8.51E-01 1.00E+20
	EU-156	811.77		10.40	1.00E+26	1.00E+26	1.00E+26 1.00E+26	1.00E+20 1.00E+20
(<u>ā</u>	1153.47		7.20	1.00E+26		1.00E+26	1.00E+20
(1230.71		8.90	1.00E+26 3.94E-01	3.94E-01	8.73E-02	1.95E-01
	HO-166M	184.41		72.60 29.60	1.08E+00	3.940-01	-2.44E-01	5.34E-01
		280.45 410.94		11.10	3.49E+00		1.34E+00	1.73E+00
		711.69		54.10	8.65E-01		-6.38E-01	4.26E-01
	TM-171	66.72		0.14	5.40E+02	5.40E+02	5.35E+02	2.68E+02
	HF-171	81.75		4.52	1.58E+01	6.08E+00	-2.92E-01	7.84E+00
	HF-1/2	125.81		11.30	6.08E+00	0,002.00	-7.69E-01	3.01E+00
(§ LU-172	181.53		20.60	1.00E+26	1.00E+26	1.00E+26	1.00E+20
	9 HO-172	810.06		16.63	1.00E+26	2	1.00E+26	1.00E+20
ì	3	912.12		15.25	1.00E+26		1.00E+26	1.00E+20
ì	<u> </u>	1093.66		62.50	1.00E+26		1.00E+26	1.00E+20
,	LU-173	100.72		5.24	1.87E+01	6.23E+00	1.30E+00	9.28E+00
		272.11		21.20	6.23E+00		6.85E-01	3.08E+00
	HF-175	343.40		84.00	9.39E+03	9.39E+03	-5.79E+03	4.64E+03
	LU-176	88.34		13.30	5.17E+00	3.42E-01	1.74E+02	2.58E+00
		201.83		86.00	3.42E-01		-6.24E-02	1.69E-01
		306.78		94.00	3.53E-01		2.09E-02	1.75E-01
	TA-182	67.75		41.20	3.14E+02	3.14E+02	1.47E+02	1.56E+02
		1121.30		34.90	8.43E+02		-1.25E+02	4.14E+02
		1189.05		16.23	1.31E+03		-7.99E+01	6.40E+02
		1221.41		26.98	6.53E+02		-1.39E+02	3.16E+02 7.16E+02
		1231.02		11.44	1.48E+03	1 045 04	1.58E+02 -1.08E+04	7.16E+02 7.43E+03
	IR-192	308.46		29.68	1.50E+04	1.24E+04	-1.73E+02	6.14E+03
		468.07		48.10	1.24E+04 1.48E+06	1.48E+06	3.22E+04	7.34E+05
	HG-203	279.19		77.30 97.72	4.08E-01	4.08E-01	-5.57E-02	2.01E-01
	BI-207	569.67 1063.62		74.90	9.65E-01	4.005-01	1.27E-01	4.75E-01
	TL-208	583.14	*	30.22	1.51E+00	4.53E-02	9.30E-01	7.47E-01
+	11-200	860.37		4.48	1.39E+01	1.004 02	1.56E+00	6.86E+00
		2614.66	*	35.85	4.53E-02		3.18E-01	0.00E+00
	BI-210M	262.00		45.00	7.12E-01	7.12E-01	-1.74E-01	3.52E-01
	DI ZIOM	300.00		23.00	1.43E+00		1.17E+00	7.06E-01
	PB-210	46.50		4.25	1.28E+01	1.28E+01	-8.04E+01	6.36E+00
	PB-211	404.84		2.90	1.32E+01	1.32E+01	2.78E+00	6.53E+00
		831.96		2.90	2.02E+01		6.66E+00	9.96E+00
	BI-212	727.17		11.80	4.12E+00	4.12E+00	-3.68E-01	2.03E+00
		1620.62		2.75	7.43E+00		-2.47E-01	3.46E+00
+	PB-212	238.63	*	44.60	6.39E-01	6.39E-01	4.56E-01	3.16E-01
		300.09		3,41	9.63E+00	•	7.88E+00	4.76E+00
	BI-214	609.31		46.30	1.02E+00	1.02E+00	5.82E-01	5.05E-01
		1120.29		15.10	4.24E+00		-3.18E-01	2.08E+00
		1764.49		15.80	1.39E+00		1.15E+00	6.48E-01
								_

	Nuclide Name	Energy	Yield(%)	Line MDA	Nuclide MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
	Name	(keV)		(pCi/grams)	(pci/granis)	(pc//grains)	(porgrams)
	BI-214	2204.22	4.98	3.86E+00	1.02E+00	8.11E-01	1.77E+00
	PB-214	295.21	19.19	1.69E+00	9.51E-01	-5.76E-01	8.35E-01
		351.92	37.19	9.51E-01		-3.94E-02	4.70E-01
	RN-219	401.80	6.50	5.80E+00	5.80E+00	-1.49E+00	2.87E+00
	RA-223	323.87	3.88	8.53Ė+00	8.53E+00	-6.16E+00	4.21E+00
	RA-224	240.98	3.95	8.28E+00	8.28E+00	3.18E+00	4.10E+00
<u>a</u>	RA-225	40.00	31.00	1.00E+26	1.00E+26	1.00E+26	1.00E+20
_	RA-226	186.21	3.28	8.80E+00	8.80E+00	-3.27E+00	4.36E+00
	TH-227	50.10	8.40	7.06E+00	2.86E+00	2.70E+01	3.51E+00
		236.00	11.50	2.86E+00		1.55E+00	1.41E+00
		256.20	6.30	5.18E+00		1.37E+00	2.56E+00
	AC-228	338.32	11.40	3.06E+00	2.56E+00	1.64E+00	1.51E+00
		911.07	27.70	2.56E+00		1.25E+00	1.26E+00
		969.11	16.60	4.15E+00		-1.02E+00	2.04E+00
	TH-230	48.44	16.90	3.52E+00	3.52E+00	1.08E+01	1.75E+00
		62.85	4:60	5.31E+00		-3.88E+00	2,63E+00
		67.67	0.37	7.48E+01		3.50E+01	3.71E+01
	PA-231	283.67	1.60	2.04E+01	1.42E+01	1.91E+01	1.01E+01
		302.67	2.30	1.42E+01		-1.61E+00	7.00E+00
	TH-231	25.64	14.70	3.67E+01	4.11E+00	1.14E+03	1.83E+01
		84.21	6.40	4.11E+00		-3.07E-03	2.04E+00
	PA-233	311.98	38.60	1.78E+11	1.78E+11	1.40E+11	8.81E+10
	PA-234	131.20	20.40	1.23E+00	1.23E+00	-2.39E-01	6.07E-01
		733.99	8.80	5.61E+00		-2.16E+00	2.76E+00
		946.00	12.00	6.30E+00		-2.15E+00	3.11E+00
	PA-234M	1001.03	0.92	7.30E+01	7.30E+01	1.12E+01	3.60E+01
	TH-234	63.29	3.80	6.40E+00	6.40E+00	-4.68E+00	3.17E+00
	υ−235	143.76	10.50	2.41E+00	2.41E+00	1.69E-01	1.20E+00
		163.35	4.70	5.70E+00		-1.34E+00	2.82E+00
		205.31	4.70	6.39E+00		1.87E+00	3.16E+00
	NP-237	86.50	12.60	5.53E+00	5.53E+00	1.84E+02	2.75E+00
(106.10	22.70	1.00E+26	1.00E+26	1.00E+26	1.00E+20
(228.18	10.70	1.00E+26		1.00E+26	1.00E+20
(6		277.60	14.10	1.00E+26		1.00E+26	1.00E+20
+	AM-241	59.54 *	35.90	3.02E+00	3.02E+00	1.88E+02	1.51E+00
	AM-243	74.67	66.00	3.90E-01	3.90E-01	-1.27E-01	1.93E-01
	CM-243	209.75	3.29	1.01E+01	2.43E+00	-1.92E+00	4.98E+00
		228.14	10.60	3.27E+00		2.41E-01	1.62E+00
		277.60	14.00	2.43E+00		5.54E-01	1.20E+00

^{+ =} Nuclide identified during the nuclide identification

^{* =} Energy line found in the spectrum

> = MDA value not calculated

^{@ =} Half-life too short to be able to perform the decay correction

4/11/2016 8:04:22AM

Page 26 of 26

Analysis Report for

1603102-01

GAS-1302

No Action Level results available for reporting purposes.

DATA REVIEW COMMENTS REPORT

Creation Date

Comment

User

No Data Review Comments Entered.

Sample Title: GAS-1302

Elapsed Live time: Elapsed Real Time: 1800 1826

Ohammall	1	L						
Channel 1:	0	0	0	0	2 '	85	1194	1630
9:	1504	1494	2235	6765	2504	1823	2190	1260
17:	1767	2450	1102	2004	6806	69700	9280	3943
25 :	21358	3868	1046	676	718	819	1031	2378
33:	1148	828	802	1148	1072	988	1033	1159
41:	1234	1448	1673	1865	1957	2085	2498	3338
49:	4492	4942	4446	4215	4291	4375	4550	4893
57 :	5175	5596	50420	34580	1169	1162	1191	1254
65 :	1382	1582	1705	1703	1643	1656	1561	1584
73:	1598	1499	1631	1557	1597	1601	1496	1597
81:	1585	1603	1597	1775	1750	1762	4939	26023
89:	1784	854	836	843	870	819	803	810
97:	794	838	· 878	818	802	831	849	827
105:	799	859	794	861	803	859	846	849
113:	876	813	809	828	868	868	893	878
121:	1414	5367	978	742	754	797	739	798
129:	805	725	764	781	774	758	798 702	1203 748
137:	939	729	751	772	747	740 708	702	740 696
145:	721	736	711	. 674	687 659	708	680	727
153:	733	673	712	691 696	814	987	705	680
161:	705	657	710 673	724	680	682	697	658
169:	662 701	694 713	654	678	698	702	717	719
177: 185:	691	720	697	752	750	750	717	781
193:	747	751	733	682	726	710	700	625
201:	670	665	663	757	676	679	676	680
209:	756	720	712	693	754	789	751	726
217:	777	796	767	731	730	726	761	710
225:	732	729	740	727	648	665	676	691
233:	664	683	704	664	619	780	699	628
241:	643	690	669	635	610	600	613	630
249:	610	590	596	561	561	641	617	600
257:	612	577	618	572	571	578	575	552
265:	558	508	544	500	558	562	555	545
273:	551	550	540	501	526	535	511	517
281:	485	522	524	577	496	518	480	535
289:	482	500	500	494	508	470	537	479
297:	469	518	482			474		
305:	528	478	462			510 468	502	445
313:	432	477			429 474	453		
321:	491	423	454			451		
329:	448	495	452 454			404		
337:	492	465	454					
345:	426	446 446	427					
353 :	452		473	•				
361:	404	424	401	421	322	4.4.2	100	

801: 193 138 224 197 209 232 231 225

Sample Title: GAS-1302

	Sample	Title:	GAS-1302					
		,	,	1			1	1
,						200	223	236
809:	221	227	219	202	223 221	209 229	228	212
817:	222	230	233	202	230	205	217	226
825:	228	210	201	221	230	226	206	228
833:	235	244	241	219	233 218	214	244	240
841:	216	230	214	206	210	238	238	248
849:	278	200	230	244	249	230	265	222
857:	252	242	226	247 233	229	265	237	222
865:	258 239	273 258	224 228	237	258	269	244	264
873: 881:	239 276	273	251	233	258	287	268	264
889:	266	240	249	265	264	283	258	266
897:	253	334	309	299	272	289	265	257
905:	310	298	258	302	308	269	302	278
913:	285	279	276	267	287	293	303	311
921:	296	306	316	332	296	295	302	304
929:	288	302	310	294	278	277	329	293
937:	317	297	284	311	339	262	328	308
945:	293	320	304	310	297	338	328	319
953:	324	288	299	321	330	327	316	323
961:	308	320	301	280	287	253	247	232
969:	293	216	237	238	226	232	249	233
977:	227		- 253	206	226	247	223	219
985:	214	220	220	244	242	220	224	234
993:	227	235	225	225	208	205	223	223
1001:	237	212	201	247	216	219	220	221
1009:	212	245	215	237	220	226	203	211 221
1017:	223	240	244	234	198	222 224	213 227	200
1025:	203	205	199 222	204 215	222 193	213	216	203
1033:	219 205	226 181	222 188	235	179	196	210	202
1041: 1049:	203	224	212	190	202	221	212	194
1049:	199	185	197	189	202	191	213	190
1065:	235	226	220	206	228	198	211	207
1003:	171	203	204	182	177	200	196	214
1081:	190	230	214	197		212	220	228
1089:	214	205	189	213	189	207	211	227
1097:	207	215	215	202	224	208	204	222
1105:	205	195	208	201	220	192	178	243
1113:	211	221	191	200	195	173	164	147
1121:	169	182	134	156	142	138	141	129
1129:	123	135	141	130	141	142	120	121
1137:	124	131	132	134	121	114	130	128
1145:	136	107	127	129	115	121	124	114
1153:	103	119	124	139	123	110	119	119
1161:	137			126	109	103	117	97
1169:	129	121	255	2355		8974	1424	114
1177:	86	78	87	85	100	81	86	77
1185:	93	74	88	71	80	81	65	70
1193:	72	69		92	87	68 5.0	68 64	68 63
1201:	69	51	64	52	59	59 51	54 56	55
1209:	56	62 5.5	44 52	62 53	49 48	5± 49	38	47
1217:	49 60	55 43	53 62	40	48 48	49	30 41	51
1225:	60	43	02	40	40	4 T	4 7	ЭI

Chamal	Data Para	nt	,;	/11/2016	ር ይ+በ//	:28 AM		Page	4
Channer	Data Repo								1
1233:	40	51	36	36	34	47	44	35	
	Sample T	itle:	GAS-1302			•		•	
Channall	1	1							
Channel 1241:	33	26	45	33	42	26	23 ່	32 ່	
1249:	33	24	28	36	30	30	34	37	
1257:	28	27	38	35	28	25	34	27	
1265: 1273:	32 30	33 32	26 34	32 28	29 21	31 26	29 31	25 23	
1273:	21	32 37	29	26	24	31	28	25	
1289:	24	25	25	28	32	19	26	20	
1297:	30	25	27	31	22	31	25	28	
1305:	24	28	31	23 38	36 40	. 27 29	41 34	29 28	
1313: 1321:	24 37	27 34	20 36	30 37	30	34	33	44	
1329:	28	91	1079	7012	10026	2945	206	23	
1337:	21	12	17	14	21	9	13	13	
1345:	15	13	15	10	3	16	8 10	14 8	
1353: 1361:	16 8	13 11	14 7	11 15	22 14	12 9	13	13	
1369:	11	22	10	16	12	9	7	11	
1377:	8	16	12	11	16	9	14	10	
1385:	15	18	10	11	10	12	11 15	16	
1393: 1401:	16 12	14 11	15 8	14 8	9 11	12 12	15 10	9 12	
1401:	17	10	8	10	10	9	5	17	
1417:	8	17	9	5	12	12	9	7	
1425:	4	15	10	4	12	9	7	18 8	
1433: 1441:	11 9	10 17	8 15	6 9	8 10	10 10	1.0 9	10	
1449:	12	11	10	13	11	3	12	12	-
1457:	8	5	13	13	15	13	8	14	
1465:	13	9	15 7	10	4	7 6	13 13	6 10	
1473: 1481:	17 8	10 12	10	13 8	5 4	10	12	10 13	
1489:	11	5	6	8 15	10	10 9 8	8	- 7	
1497:	10	15	5	15	11	8	11	4	
1505:	5	7 12	4 7	8 13	13 4	15 6	6 7	11 11	
1513: 1521:	8 13	10		13 7	2	5	9	14	
1529:	7	9	9 9 9 7	8 7	9 8	7	10	3	
1537:	9	4	9	7	8	5	8	10	
1545:	10 9	10 8	7 8	6 12	11 6	8 4	8 5	11 8	
1553: 1561:	10	3	7	6	4	7	10	13	
1569:	9	6	10	5 11	10	1	13	3	
1577 :	9	11	8	11	8	9	11	3 8 7 5 4 6 8	
1585:	9 8	11 11	7 7	5 8	12 8	16 8	6 6	· /	
1593: 1601:	8	9	8	10	10	10	8	4	
1609:	6	4	5	12	6	5	12	6	
1617:	6 3 7	9 5	11	4	10	8	4		
1625: 1633:	7 7	5 8	6 7	4 6	4 12	7 5	8 4	14 6	
1633: 1641:	, 5	8 8	7	4	4	5 5 5	10	6 3 8	
1649:	5 6	4	8	8	6	5	6		
1657:	6	6	4	8	7	11	9	4	

4/11/2016 8:04:28 AM Page Channel Data Report 12 7 19 1665: Sample Title: GAS-1302 3 8 9 9 7 5 8 10 7 5 1673: 3 4 .5 5 1681: 1689: 1697: 1705: . 3 1713: 1721: 1729: 6 1737: 1745: 1753: 4 1761: - 4 1769: 8 7 4 5 8 4 5 5 1777: 1785: 1793: 7 1801: 1809: 1817: 1825: 5 2 5 3 4 6 6 10 26 8 7 1833: 1841: 1849: 6 1857: 1865: 7 1873: 1881:

9 3 5 2 4 3 3 5 7 1889: 5 3 1897: 1905: 1913: 1921: 4 1929: 1937: 2 2 5 5 6 5 1945: 1953: 1961: 1969: 1977: 3 1985: 1993: 2001: 5 8 2009: 2017:

6

4 10

2

2025:

2033:

2041:

2049:

2057:

2065:

2073:

2081:

2089:

7

Channel	Data Repor	:t	•	4/11/2016	8:04:	28 AM		Page	6
2097:	2	4	3	4	9	6	4	7	
	Sample Ti	.tle:	GAS-130	2					
Chanel 1 21129: ::::::::::::::::::::::::::::::	33632155352361624132747336116241011001001103000021610 410	06135540435645546386325420430412520202151010111022300	434303443446407525444386432122024113200111120200210211		-43302564387573775568466441301031002002312110010020101	75462362521565823335464901121331133212012020020120000	8278533451930544455557444334221233101112210011101102000	03313832243383237735922162411731501120021011021001	

Channel	Data Repo	rt		4/11/2016	8:04:	28 AM		Page
2529:	0	0	0	1	0	O	1	1.
	Sample T	itle:	GAS-130	2				
Chasses::::::::::::::::::::::::::::::::::		000000000000000000000000000000000000		0010000030000000100031010000000100100100	000010000110000200000100000010000010001	000000051100001000000000000000000000000	010000004000010000000000000000000000	010100003000000010000001000000000000000

2961: 0 0 1 1 0 0 1 0 Sample Title: GAS-1302 Channel	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Channel	0 0 0 0 0 1 0 0
2969: 0 0 1 0 <td>0 0 0 0 0 1 0 0</td>	0 0 0 0 0 1 0 0
3065: 0 <td>000100000000000000000000000000000000000</td>	000100000000000000000000000000000000000

Channel	Data Rep	ort	4	/11/2016	8:04:	28 AM		Page
3393:	0	O	0	0	O	0	0	0
	Sample '	Title:	GAS-1302					
Change 1 34017::::::::::::::::::::::::::::::::::::			000000001001000000001100000000000000000	010000000000000000000000000000000000000	000000110000011000000000000000000000000	000000000000000000000000000000000000000	101000000000000000000000000000000000000	000000010000010000000000000000000000000

Channel	Data Rep	ort	4/	11/2016	8:04:	28 AM		Page 10
3825:	0	0	0	0	0	0	0	0
	Sample	Title:	GAS-1302			-		
Channel	-							
3833:	0	0	0	0	0	0	0	0
3841:	0	Ō	O	0	0	0	0	0
3849:	0	Ō	0	0	0	1	0	0
3857:	2	0	1	0	0	0	0	1
3865:	0	0	1	0	0 0	0 0	0 0	0 0
3873:	0	0	1 0	0 0	0	Ü	0	0
3881: 3889:	0 0	0 0	0	0	0	0	0	0
3897:	0	0	0	0	1	Ö	Ő	ő
3905:	0	0	ŏ	ő	Ō	Ö	Ŏ	Ö
3913:	ŏ	Õ	Ŏ	Ö	Ŏ	Ö	0	Ö
3921:	Ŏ	Ö	1	Ō	0	0	0	0
3929:	0	Ó	1	Ö	0	0	. 0	0
3937:	0	Ô	0	0	0	0	0	0
3945:	0	0	0 .	0	0	0	0	0
3953 :	0	1.	0	0	0	0	0	1
3961:	0	0	0	0	0	0	0	0
3969:	0	0	0	0	0	0	0	0
3977:	0	0	0	0	0	0	0	0 0
3985:	0	0	0	0 0	0 0	0 0	0 0	0
3993: 4001:	0 0	0 0	0 0	0	0	0	0	0
4001:	0	0	0	0	0	0	0	0
4009.	0	0	0	Ö	Õ	ő	Ö	0
4025:	ŏ	Ö	ŏ	Ö	Ŏ	Ö	Õ	Ō
4033:	Ŏ	Ö	. 0	Õ	Ō	0	0	0
4041:	Ō	0	1	0	0	0	0	0
4049:	0	0	0	0	0	0	0-	1
4057:	0	0	0	1	0	C	Ó	0
4065:	0	0	0	Ü	0	0	0	0
4073:	0	1	0	0	0	0	0	0
4081:	0	0	0	0	0	0	1	0
4089:	1	0	0	0	0	0	0	0

0000035517.CNF

Page 1 of 22

Analysis Report for

1603102-02

BLANK

GAMMA SPECTRUM ANALYSIS

Sample Identification

Sample Description Sample Type

Sample Size Facility

Sample Taken On

Acquisition Started

Procedure Operator **Detector Name**

Geometry

Live Time Real Time

Dead Time

Peak Locate Threshold Peak Locate Range (in channels)

Peak Area Range (in channels) Identification Energy Tolerance

Energy Calibration Used Done On Efficiency Calibration Used Done On **Efficiency Calibration Description**

Sample Number

: 1603102-02

: BLANK .

: SOIL

: 7.834E+02 grams

: Countroom

: 4/13/2016 7:11:17AM

: 4/13/2016 1:15:30PM

: GAS-1402 pCi

: Administrator

: GE3 : GAS-1402

: 3600.0 seconds

; 3611.9 seconds

: 0.33 %

: 2.50 : 1 - 4096

: 9 - 4096 : 1.000 keV

: 10/25/2014

: 10/25/2014

: 35733

PEAK-TO-TOTAL CALIBRATION REPORT

Peak-to-Total Efficiency Calibration Equation

BLANK

PEAK LOCATE REPORT

Peak Locate Performed on

: 4/13/2016 2:15:43PM

Peak Locate From Channel

: 1

Peak Locate To Channel

: 4096

Peak Search Sensitivity

: 2.50

Peak No.	Energy (keV)	Centroid Channel	Centroid Uncertainty	Peak Significance
. 1	77.05	77.26	0.0000	0.00
2	142.85	143.03	0.0000	. 0.00
3	367.53	367.59	0.0000	0.00
4	530.01	530.00	0.000	0.00
5	591.66	591.61	0.0000	0.00
6	848.30	848.14	0.0000	0.00
7	941.80	941.59	0.0000	0.00
8	968.83	968.61	0.000	0.00
9	984.95	984.72	0.0000	0.00
10	1059.94	1069.67	0.0000	0.00
11	1173.16	1172.86	0.0000	0.00
12	1193.39	1193.08	0.0000	0.00
13	1439.16	1438.75	0.0000	0.00
14	1764.96	1764,43	0.0000	0.00

^{? =} Adjacent peak noted Errors quoted at 2.000sigma

BLANK

PEAK ANALYSIS REPORT

Peak Analysis Performed on

: 4/13/2016 2:15:43PM

Peak Analysis From Channel

: 1

Peak Analysis To Channel

: 4096

Peak No.	Energy (keV)	ROI ROI start end	Peak Centroid	Net Peak Area	Net Area Uncertainty	Continuum Counts	FWHM (keV)
1	77.05	74 - 81	77.26	3.73E+01	37.68	2.11E+02	2.88
2	142.85	139 - 146	143.03	3.70E+01	28.43	1.06E+02	2.19
3	367.53	363 - 373	367.59	2.99E+01	19.22	3.43E+01	8.46
4	530.01	527 - 533	530.00	1.08E+01	11.00	1.44E+01	3.73
5	591.66	588 - 595	591.61	1.10E+01	13.71	2.40E+01	3.53
6	848.30	844 - 851	848.14	1.00E+01	9.38	8.00E+00	1.24
7	941.80	939 - 944	941.59	8.31E+00	8.89	9.38E+00	3.77
8	968.83	964 - 972	968.61	1.05E+01	10.02	9.00E+00	1.60
9	984.95	980 - 983	984.72	8.69E+00	9.62	8.62E+00	3.65
10	1069.94	1067 - 1071	1069.67	6.78E+00	6.96	4.44E+00	1.20
11	1173.16	1169 - 1175	1172.86	1.61E+01	9.18	3.72E+00	2.84
12	1193.39	1190 - 1196	1193.08	7.56E+00	6.95	2.89E+00	2.68
13	1439.16	1435 - 1441	1438.75	4.42E+00	6.02	3.17E+00	2.56
14	1764.96	1761 - 1767	1764.43	7.00E+00	5.29	0.00E+00	1.98

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

PEAK ANALYSIS REPORT

Peak Analysis Performed on

: 4/13/2016 2:15:43PM

Peak Analysis From Channel

: 1

Peak Analysis To Channel

: 4096

Peak	Energy	ROI	ROI	Net Peak	Net Area	Continuum	Critical
No.	(keV)	start	end	Area	Uncertainty	Counts	Level
1	77.05	74 -	31	3.73E+01	37.68	2.11E+02	2.93E+01

BLANK

Peak No.	Energy (keV)	ROI start	ROI end	Net Peak Area	Net Area Uncertainty	Continuum Counts	Critical Level
2	142.85	139 -	146	3.70E+01	28.43	1.06E+02	2.11E+01
3	367.53	363 -	373	2.99E∻01	19.22	3.43E+01	1.30E+01
4	530.01	527 -	533	1.08E+01	11.00	1.44E+01	7.25E+00
5	591.66	588 -	595	1.10E+01	13.71	2.40E+01	9.86E+00
6	848.30	844 -	851	1.00E+01	9.38	8.00E+00	5.70E+00
7	941.80	939 –	944	8.31E+00	8.89	9.38E+00	5.56E+00
8	968.83	964 -	972	1.05E+01	10.02	9.00E+00	6.29E+00
9	984.95	980 -	988	8.69E+00	9.€2	8.62E+00	6.25E+00
10	1069.94	1067 -	1071	6.78E+00	6.96	4.44E+00	3.80E+00
11	1173.16	1169 -	1175	1.61E+01	9.18	3.72E+00	3.65E+00
12	1193.39	1190 -	1196	7.56E+00	6.95	2.89E+00	3.49E+00
13	1439.16	1435 -	1441	4.42E+00	6.02	3.17E+00	3.54E+00
14	1764.96	1761 -	1767	7.00E+00	5.29	0.00E+00	0.00E+00

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

PEAK WITH NID REPORT

Peak Analysis Performed on

: 4/13/2016 2:15:43PM

Peak Analysis From Channel

Peak Analysis To Channel

: 4096

Tentative NID Library

: \\OR-GAMMA1\ApexRcot\Countroom\Library\TMA2.NLB

Peak Match Tolerance

: 1.000 keV

Peak No.	Energy (keV)	ROI start	RO! end	Peak Centroid	Net Peak Area	Net Area Uncertainty	Continuum Counts	Tentative Nuclide
1	77.05	74 -	81	77.26	3.73E+01	37.68	2.11E+02	
2	142.85	139 -	146	143.03	3.70E+01	28.43	1.06E+02	U-235
3	367.53	363 -	373	367.59	2.99E+01	19.22	3.43E+01	
4	530.01	527 –	533	530.00	1.08E+01	11.00	1.44E+01	I-133
								RB-83
5	591.66	588 -	595	591.61	1.10E+01	13.71	2.40E+01	
6	848.30	844 -	851	848.14	1.00E+01	9.38	8.00E+00	
7	941.80	939 -	944	941.59	8.31E+00	8.89	9.38E+00	
8	968.83	964 -	972	968.61	1.05E+01	10.02	9.00E+00	AC-228
9	984.95	980 -	988	984.72	8.69E+00	9.62	8.62E+00	
10	1069.94	1067 -	1071	1069.67	6.78E+00	6.96	4.44E+00	
11	1173.16	1169 -	1175	1172.86	1.61E+01	9.18	3.72E+00	CO-60

1603102-02

BLANK

Peak	Energy	ROi	ROI	Peak	Net Peak	Net Area	Continuum	Tentative
No.	(keV)	start	end	Centroid	Area	Uncertainty	Counts	Nuclide
12 13 14	1193.39 1439.16 1764.96	1190 - 1435 - 1761 -	1441	1193.08 1438.75 1764.43	7.56E+00 4.42E+00 7.00E+00	6.95 6.02 5.29	2.89E+00 3.17E+00 0.00E+00	

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

PEAK EFFICIENCY REPORT

Peak Analysis Performed on

: 4/13/2016 2:15:43PM

Peak No.	Energy (keV)	Net Peak Area	Net Area Uncertainty	Peak Efficiency	Efficiency Uncertainty
1	77.05	3.73E+01	37.68	2.398-02	2.16E-03
2	142.85	3.70E+01	28.43	2.15E-02	1.63E-03
3	367.53	2.99E+01	19.22	1.07E-02	8.72E-04
4	530.01	1.08E+01	11.00	7.76E-03	6.99E-04
5	591.66	1.10E+01	13.71	7.05E-03	6.38E-04
6	848.30	1.00E+01	9.38	5.16E-03	4.15E-04
7	941.80	3.31E+00	8.89	4.72E-03	3.67E-04
8	968.83	1.05E+01	10.02	4.61E-03	3.61E-04
9	984.95	8,69E+00	9.62	4.548-03	3.58E-04
10	1069.94	6.78E+00	6.96	4.24E-03	3.43E-04
11	1173.16	1.61E+01	9.18	3.92E-03	3.23E-04
12	1193.39	7.56E+00	6.95	3.87E-03	3.19E-04
13	1439.16	4.42E+00	6.02	3.33E-03	2.73E-04
14	1764.96	7.00E+00	5.29	2.86E-03	2.24E-04

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000 sigma 1603102-02

BLANK

BACKGROUND SUBTRACT REPORT

Peak Analysis Performed on

: 4/13/2016 2:15:43PM

Env. Background File

: \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035178.CNF

Peak No.	Energy (keV)	Original Area	Orig. Area Uncertainty	Ambient Background	Backgr. Uncert.	Subtracted Area	Subtracted Uncert.
1	77.05	3.73E+01	37.68			3.73E+01	3.77E+01
2	142.85	3.70E+01	28.43			3.70E+01	2.84E+01
3	367.53	2.99E+01	19.22			2.99E+01	1.92E+01
4	530.01	1.08E+01	11.00			1.08E+01	1.10E+01
5		1.10E+01	13.71			1.10E+01	1.37E+01
6	848.30	1.00E+01	9.38			1.00E+01	9.38E+00
7	941.80	8.31E+00	8.89			8.31E+00	8.89E+00
8	968.83	1.05E+01	10.02			1.05年+01	1.00E+01
9	984.95	8.69E+00	9.62			8.69E+00	9.62E+00
10	1069.94	6.78E+00	6.96	•		6.78E+00	6.96E+00
11	1173.16	1.61E+01	9.18			1.61E+01	9.18E+00
12	1193.39	7.56E+00	6.95			7.56E+00	6.95E+00
13	1439.16	4.42E+00	6.02			4.4CE+00	6.02E+00
14	1764.96	7.00E+00	5.29		*	7.00E+00	5.29E+00

M = First peak in a multiplet region

m = Other peak in a multiplat region

F = Fitted singlet

Errors quoted at 2.000sigma

AREA CORRECTION REPORT REFERENCE PEAK / BKG. SUBTRACT

Peak Analysis Performed on

: 4/13/2016 2:15:43PM

Ref. Peak Energy

: 0.00

Reference Date

Peak Ratio

: 0.00

Background File

: 0.00

Uncertainty

: \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035178.CNF

Corrected Area is: Original * Peak Ratio - Background

Peak No.	Energy (keV)	Original Area	Orig. Area Uncertainty	Ambient Background	Backgr. Uncert.	Corrected Area	Corrected Uncert.
1	77.05	3,73E+01	37.63			3.73E+01	3.77E+01
$\bar{2}$	142.85	3.70E+01	28.43			3.70E+01	2.84E+01
3	367.53	2.99E+01	19.22			2.99E+01	1.92E+01
4	530.01	1.08E+01	11.00			1.08E+01	1.10E+01

t for 1603102-02

BLANK

Peak No.	<i>"</i> 10	Original Area	Orig. Area Uncertainty	Ambient Background	Backgr. Uncert.	Corrected Area	Corrected Uncert.
5	591.66	L.10E+01	13.71	,	•	1.10E+01	1.37E+01
6	848.30	1.00E+01	9.38	• •		1.00E+01	9.38E+00
7	•	8.31E+09	8.89			8.31E+00	8.89E+00
. 8		1.65H+01	10.02	4	•	1.05E+01	1.00E+01
9		8.69E+00	9,62			8.69E+00	9.62E+00
10		6.78E+00	6.96			6.78E+00	6.96E+00
	1173.16	1.61E+01	9.18			1.61E+01	9.18E+00
	1193.39	7.56E+00	6.95			7.56E+00	6.95E+00
	1439.16	4.42E+00	6.02	•		4.42E+00	6.02E+00
	1764.96	7.00E+00	5.29	٠	e P	7.00E+00	5.29E+00

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

NUCLIDE IDENTIFICATION REPORT

Nuclide Library Used

: \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB

IDENTIFIED NUCLIDES

Nuclide Name	ld Confidence	Energy (keV)	•	Yield(%)	Activity (pCi/grams)	Activity Uncertainty
I-133	0.996	529.87	*	86.30	1.92E-02	1.97E-02

- * = Energy line found in the spectrum.
- = Manually added nuclide.
- ? = Manually edited nuclide.

Energy Tolerance: 1.000 keV

Nuclide confidence index threshold = 0.30

Errors quoted at 2.000sigma

UNIDENTIFIED PEAKS

Peak Locate Performed on

: 4/13/2016 2:15:43PM

Peak Locate From Channel

: 1

Peak Locate To Channel

: 4096

1603102-02

BLANK

Peak No.	Energy (keV)	Peak Size (CPS)	Peak CPS (%) Uncertainty	Peak Type	Tolerance Nuclide	
1·	77.05	1.03584E-02	50.53			
2	142.85	1.02778E-02	38.41	Tol.	U-235	
3	367.53	8.29196E-03	32.20			
5	591.66	3.05556E-03	62.32			
6	848.30	2.77778E-03	46.90			
7	941.80	2.30769E-03	53.49			
8	968.83	2.91667E-03	47.74	Tol.	AC-228	
9	984.95	2.41453E-03	55.32			
10	1069.94	1.88272E-03	51.38	-		
11	1173.16	4.48302E-03	28.44	Tol.	CO-60	
12	1193.39	2.09877E-03	45.97			
13	1439.16	1.22685E-03	68.16			
14	1764.96	1.94444E-03	37.80	Tol.	BI-214	

M = First peak in a multiplet region

m = Other peak in a multiple! region

F = Fitted singlet

Errors quoted at 2.000sigma

NUCLIDE IDENTIFICATION REPORT

Nuclide Library Used

: \\OR-GAMMA1\ApexRoot\Countroom\Libra:y\TMA2.NLB

IDENTIFIED NUCLIDES

Nuclide Name	ld Confidence	Energy (keV)		Yield(%)	Activity (pCi/grams)	Activity Uncertainty	
I-133	0.99	529.87	*	86.30	1.92E-02	1.97E-02	

- * = Energy line found in the spectrum.
- = Manually added nuclide.
- ? = Manually edited nuclide.
- @ = Energy line not used for Weighted Mean Activity

Energy Tolerance: 1.000 keV

Nuclide confidence index threshold = 0.30

Errors quoted at 2.000sigma

1603102-62

BLANK

INTERFERENCE CORRECTED REPORT

Nuclide Name	Nuclide Id Confidence	Wt mean Activity (pCi/grams)	Activity		
 I-133	0.996	1.92E-02	1.97E-02		

^{? =} nuclide is part of an undetermined solution

Errors quoted at 2.000sigma

X = nuclide rejected by the interference analysis

^{@ =} nuclide contains energy lines not used in Weighted Mean Activity

BLANK

UNIDENTIFIED PEAKS

Peak Locate Performed on

: 4/13/2016 2:15:43PM

Peak Locate From Channel

: 4096

: 1 Peak Locate To Channel

Peak No.	Energy (keV)	Peak Size (CPS)	Peak CPS (%) Uncertainty	Peak Type	Tolerance Nuclide
1	77.05	1.03584E-02	50.53		
2	142.85	1.02778E-02	38.41	Tol.	Ŭ−235
3	367.53	8 29196E-03	32.20		
5	591.66	3.05556E-03	62.32		
6	848.30	2.77778E-03	46.90		
7	941.80	2.30769E-03	53.49		
8	968.83	2.91667E-03	47.74	Tol.	AC-228
9	984.95	2.41453E-03	55.32		
10	1069.94	1.88272E-03	51.38		
11	1173.16	4.48302E-03	28.44	Tol.	CO-60
12	1193.39	2.09877E-03	45.97		
13	1439.16	1.22685E-03	68.16		
14	1764.96	1.94444E-03	37.80	Tol.	BI-214

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

NUCLIDE MDA REPORT

: \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB Nuclide Library Used

	Nuclide Name	Energy (keV)	Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)
+	BE-7	477.59	10.42	-7.20E-02	2.55E-01	2,55E-01
+ +	NA-22 NA-24	1274.54 1368.53 2754.09	99.94 99.99 99.86	-3.49E-03 2.25E-02 3.97E-C3	3.69E-02 5.28E-02	3.69E-02 5.28E-02 3.53E-02

Analysis Report for 1603102-02

	Nuclide Name	Energy (keV)	Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
			······································				
+	AL-26	1808.65	99.76	-1.37E-02	3.18E-02	3.18E-02	
+	K-40	1460.81	10.67	-3.82E-01	3.28E-01	3.28E-01	
+	AR-41	1293.64	99.16	1.23E-01	4.52E-01	4.52E-01	
+	TI-44	67.88	94.40	-1.39E-02	1.90E-02	1.90E-02	
		78.34	96.00	5.16E-03		1.93E-02	
+	SC-46	889.25	99.98	2.00E-02	2.83E-02	3.65E-02	
		1120.51	99.99	1.18E-03		2.83E-02	
+	V-48	983.52	99.98	8.53E-03	3.33E-02	3.87E-02	
		1312.10	97,50	-1.39E-03		3.33E-02	
+	CR-51	320.08	9.183	5.08E-02	2.51E-01	2.51E-01	
+	MN-54	834.83	99.97	-4.59E-03	3.19E-02	3.19E-02	
+	CO-56	846.75	99.96	1.58E-02	3.74E-02	3.74E-02	
		1037.75	14.03	4.30E-03		2.86E-01	
		1238.25	67.00	9.55E-03	•	5.01E-02 1.60E-01	
		1771.40	15.51 16.90	-1.38±-01 8.43E-03		1.86E-01	
+	CO-57	2598.48 122.06	85.51	1.10E-02	2.08E-02	2.08E-02	
,	CO-37	136.48	10.60	1.51E-02	2.002 ,2	1.55E-01	
+	CO-58	810.76	99.40	3.22E-03	2.71E-02	2.71E-02	
+	FE-59	1099.22	56.50	8.23E-04	5.39E-02	5.39E-02	*
•	111 33	1291.56	43.20	3.07E-03	0,002 00	7.37E-02	
+	CO-60	1173.22	100.00	4.06E-02	5.48E-02	5.48E-02	
•	00 00	1332.49	100.00	2.84E-02		5.61E-02	
+	ZN-65	1115.52	50.75	-8.31E-03	6.06E-02	6.06E-02	
+	GA-67	93.31	35.70	1.14E-01	7.00E-02	7.00E-02	
		208.95	.2.24	-7.65E-01		9.23E-01	
		300.22	16.00	-3.06E-02		1.61E-01	
+	SE-75	121.11	16.70	3.31E-02	2.81E-02	1.04E-01	
	•	136.00	59.20	5.74E-03		2.81E-02	
•	100 miles	264.65	59.80	1.03E-02		3.84E-02	
	•	279.53	25.20	2.70E-02		8.81E-02 2.29E-01	
1	חמ ממ	400.65 776.52	11.40 13.00	8.98E-03 -3.94E-02	2.42E-01	2.29E-01 2.42E-01	
+	RB-82		46.00	-1.72E-02	5.94E-02	5.94E-02	
+	RB-83	520.41	30.30	2.95E-03	J.94E-02	9.16E-02	
	•	529.64 552.65	16.40	-5.09E-02		1.52E-01	
+	KR-85	513.99	0.43	9.495+00	1.07E+01	1.07E+01	
+	SR-85	513.99	99.27	4.16E-02	4.71E-02	4.71E-02	
+ +	Y-88	898.02	93.40	1.03E-02	3.64E-02	3.64E-02	
1	1 00	1836.01	99.38	2.32E-04	0,012 02	4.56E-02	
+	NB-93M	16.57	9.43	2.31E+01	3.61E+01	3-61E+01	
+	NB-94	702.63	100.00		3.45E-02	3.46E-02	
	117 74	871.10	100.00	-1.90E-02		3.45E-02	
+	NB-95	765.79	99.81	5.94E-03	3,65E-02	3.65E-02	
+	NB-95M	235.69	25.00	4.05E-02	1.06E-01	1.06E-01	
+	ZR-95.	724.18	43.70	1.01E-03	5.09E-02	6.75E-02	
•		756.72	55.30	-1.56E-02		5.09E-02	
		130.12	59.50	1.000 02			

1603102-02

	Nuclide Name	Energy (keV)	Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
+	MO-99	181.06	6.20	-1.68E-02	1.95E-01	2.95E-01	
		739.58	12.80	-6.91E-02		1.95E-01	
		778.00	4.50	2.89E-01		7.73E-01	
+	RU-103	497.08	89.00	-3.30E-03	3.23E-02	3.23E-02	•
+	RU-106	621.84	9.80	-1.59E-01	2.52E-01	2.52E-01	
+	AG-108M	433.93	89.00	-4.51E-03	2.53E-02	2.53E-02	
		614.37	90.40	-1.06E - 02		3.65E-02	
		722.95	90.50	-8.64E-03	4 405 01	2.98E-02	
+	CD-109	88.03	3.72	-1.77E-01	4.40E-01	4.40E-01	
+	AG-110M	657.75	93.14	-1.90E-02	2.67E-02	2.67E-02	
		677.61	10.53	-1.32E-02	•	2.64E-01	
		706.67	16.46 21.98	-4.92E-02 3.04E-02		2.00E-01 1.55E-01	
		763.93 884.67	71.63	-3.09E-03	•	4.69E-02	
		1384.27	23.94	-8.75E-03		1.08E-01	
+	CD-113M	263.70	0.02	3.70E+01	9.95E+01	9.95E+01	
+	SN-113	255.12	1.93	6.23E-02	3.74E-02	1.19E+00	
		391.69	64.90	-1.47E-03		3.74E-02	
+	TE123M	159.00	84.10	-7.83E-03	1.79E-02	1.79E-02	
+	SB-124	602.71	97.87	8.78E-03	3.68E-02	3.68E-02	
		645.85	7.26	-4.65E-02		4.44E-01	
		722.78	11.10	-7.07E-02		2.44E-01	
		1691.02	49.00	1.33E-02	57 O.37 O.1	6.18E-02	
÷	I-125	35.49	6.49	-2.70E-01	7.30E-01	7.30E-01	.'
+	SB-125	176.33	6.89	-3.39E-02	8.40E-02	2.44E-01	
		427.89	29.33	1.42E-02		8.40E-02 3.17E-01	
		463.38 600.56	10.35 17.80	1.43E-01 -1.89E-02		1.97E-01	
		635.90	11.32	-5.97E-02		3.07E-01	
+	SB-126	414.70	83.30	1.67E-02	3.28E-02	3.32E-02	
		666.33	99.60	-2.25E-02		3.28E-02	
		695.00	99.60	-1.01E-02		3.49E-02	
		720.50	53.80	-1.52E-03		5.31E-02	
+	SN-126	87.57	37.00	-1.78E-02	4.42E-02	4.42E-02	
+	SB-127	473.00	25.00	3.13E-03	9.14E-02		
		685.20	35.70	-1.72E-02		9.14E-02	
	T 100	783.80	14.70	4.77E-03	1.77E-01	2.42E-01 1.77E-01	
+	I - 129	29.78	57.00	÷2.26E-02	1.776-01	4.31E-01	
	<i>i</i> ,	33.60 39.58	13.20 7.52	1,03E-02 -9.04E-02		4.49E-01	
+	I-131	284.30	6.05	-5.38E-02	3.27E-02		
,	1 +0+	364.48	81.20	1.24E-02		3,27E-02	
		636.97	7.26	6.58E-02		5.12E-01	
		722.29	1.80	-4.45E-01		1.53E+00	
+	TE-132	49.72	13.10	-2.31E-01	2.79E-02	*	
		228.16	88.00	1.01E-02		2.79E-02	
+ .	- BA-133	81.00	33.00	-8.54E-03	4.90E-02		
		302.84	17.80	6.43E-03	٠	1.48E-01	
		356.01	€0.00	1.99E-02		4.90E-02	

	Nuclide Name	Energy (keV)		Yield(%)	Activity (pC!/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)		
+	I-133	529.87	*	86.30	1.92E-02	3.07E-02	3.07E-02		
. +	XE-133	81.00		38.00	-7.69E-03	4.54E-02	4.54E-02		
+	CS-134	563.23		8.38	-3.89E-02	3.55E-02	3.65E-01		
		569.32		15.43	-8.27E-02		1.60E-01		
		604.70		97.60	-9.38E-03		3.55E-02		
		795.84		85.40			3.88E-02		
	~~ *25	801.93		8.73	6.85E-02	1 AED 01	3.22E-01		
+ .	CS-135	268.24		16.00	1.59E-02	1.45E-01	1.45E-01 3.50E-01		
+	I-135	1131.51		22.50	5.94E-02	3.14E-01			
		1260.41 1678.93		28.60 9.54	1.17E-01 -3.37E-02		3.14E-01 6.27E-01		
+	CS-136	153.22		7.46	6.91E-02	2.20E-02	2.42E-01		
	05 100	163.89		4.61	-8.24E-03		3.75E-01		
		176.55		13.56	-6.65E-03	* .	1.26E-01		
		273.65		12.66	-2.60E-02	· ·	1.79E-01		
		340.57		48.50	-1.32E-02		5.53E-02		
		818.50		99.70	-9.17E-04		2.20E-02		
		1048.07 1235.34		79.60 19.70	2.55E-03 9.18E-03		4.94E-02 1.72E-01		
+	CS-137	661.65		85.12	1.79E-02	4.05E-02	4.05E-02		
	LA-138	788.74		34.00	2.13E-02	6.14E-02	1.09E-01		**************************************
	211 100	1435.81		66.00	8.7CE-03	•••	6.14E-02		,
+ .	CE-139	165.85		90.35	-6.56E-04	2.12E-02	2.12E-02		
+	BA-140	162.64		6.70	3.59E-02	1.08E-01	2.54E-01	•	t/
		304.84		4.50	2.76E-01		6.05E-01		
		423.70		3.20	-6.68E-02		8.81E-01		
		437.55		2.00	3.00E-01		1.38E+00		
	T 7 1 4 0	537.32		25.00	3.01E-02 7.94E-03	4.34E-02	1.08E-01 1.29E-01		
+	LA-140	328.77		20.50 45.50		4.346-02	7,10E-02		
		487.03 815.85		23.50	-2.91E-03 1.36E-02		1.09E-01		
		1596.49		95.49	7.62E-03		4.34E-02		
+	CE-141	145.44		48.40	-5.76E-03	3.21E-02	3.21E-02		
+	CE-143	57.36		11.80	-2.08E-02	6.45E-02	1.96E-01		
		293.26		42.00	1.55E-02		6.45E-02		
		664.55		5.20	2.04E-01		7.98E-01		
+	CE-144	133.54		10.80	4.22E-02	1.54E-01	1.54E-01		
+	PM-144	476.78		42.00	-2.44E-02	3.14E-02	6.02E-02		
		618.01		98.60	-4.42E-03		3.14E-02		
1	PM-145	696.49		99.49	-2.97E-03 7.61E-02	1.04E-01	3.45E-02 1.99E-01		
+	FM-142	36.85		21.70 39.70	5.85E-02	1.045.01	1.04E-01		
		37.36 42.30		39.70 15.10	-4.64E-02		1.90E-01		
		72.40		2.31	-1.78E-01		7.65E-01		
+	PM-146	453.90		39.94	1.21E-02	6.49E-02	6.49E-02		
		735.90		14.01	3.39E-02		2.13E-01		
		747.13		13.10	2.54E-02		2.31E-01		
$-\frac{1}{4}$	ND-147	91.11		28.90	3.91E-02	7.67E-02	7.67E-02		
		531.02		13.10	7.49E-02		2.26E-01		

1603102-02

+ PM-149		Nuclide Name	Energy (keV)	Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)			
## BU-152	+	PM-149	285.90	3.10	-5.41E-02	8.13E-01	8.13E-01			
244.69						8.66E-02	8.66E-02			
344.27	•	20 102					4.39E-01			
778.89 9.20 1.78E-01 3.53E-01 1085.78 7.22 4.76E-02 3.81E-01 11085.78 7.22 4.76E-02 3.81E-01 1112.02 9.60 0.00E+00 3.65E-01 1407.95 14.94 2.84E-02 2.67E-01 1407.95 14.94 2.84E-02 2.67E-01 1407.95 14.94 2.84E-02 4.52E-02 4.52E-02 12.81E-01 12.02 9.60 0.00E+00 3.65E-01 14.07.95 14.94 2.84E-02 2.67E-01 14.07.95 14.94 2.84E-02 4.52E-02 4.52E-02 12.02E-02 12.04.76 17.90 0.00E+00 2.17E-01 12.04.75 35.50 -9.81E-03 1.04E-01 12.04.75 35.50 -9.81E-03 1.04E-01 12.04E-01 12.02E-02 12							1.29E-01			
1085.78					1.78E-01					
1112.02			964.01	10.40		•				
1407.95										
+ GD-153 97.43 31.30 -5.16E-02 4.52E-02 4.52E-02 103.18 22.20 8.77E-03 6.48E-02 4.20E-02 123.07 40.50 1.75E-02 4.20E-02 4.20E-02 1.37E-01 1.37E-01 1.37E-01 1.37E-01 1.37E-01 1.004.76 17.90 0.00E+00 2.17E-01 1.04E-01 1.274.45 35.50 -9.81E-03 1.04E-01 1.04E-01 1.274.45 35.50 -9.81E-03 1.04E-01 1.04E-01 1.055.30 20.70 -1.46E-02 6.79E-02 1.567E-02 6.79E-02 1.35SE-01 1.30E-01 1.53.47 7.20 5.08E-02 4.44E-01 1.53.47 7.20 5.08E-02 4.44E-01 1.53.47 7.20 5.08E-02 4.44E-01 1.230.71 8.90 -3.37E-02 3.25E-02 3.25E-02 3.25E-02 1.230.71 8.90 -3.37E-02 4.07E-01 4.07E-01 1.05.30 4.07E-01 4.07E-01 4.07E-01 1.05.30 4.07E-01 4.07E-01 4.07E-01 1.53.47 7.20 5.08E-02 4.44E-01 1.25.49 11.10 4.01E-02 2.27E-01 4.07E-01 4.0										
103.18 22.20 8.77E-03 6.48E-02 4.20E-02 4.20E-01 4.2					and the second s	4 500 00				
## BU-154 123.07 # 40.50	+	GD-153			•	4.52E-U2				
723.30 19.70 -3.97E-02 1.37E-01 873.19 11.50 7.45E-02 3.53E-01 996.32 10.30 -2.28E-01 2.48E-01 1004.76 17.90 0.00E+00 2.17E-01 1274.45 35.50 -9.81E-03 1.04E-01 + EU-155 86.50 30.90 2.35E-02 5.67E-02 5.67E-02 105.30 20.70 -1.46E-02 6.79E-02 + EU-156 811.77 10.40 6.10E-02 2.62E-01 2.62E-01 1153.47 7.20 5.08E-02 4.44E-01 1230.71 8.90 -3.37E-02 4.07E-01 + HO-166M 184.41 72.60 3.79E-02 3.25E-02 3.25E-02 280.45 29.60 2.78E-03 7.51E-02 410.94 11.10 4.01E-02 2.27E-01 711.69 54.10 -4.43E-03 6.29E-02 + TM-171 66.72 0.14 -1.42E+01 1.37E+01 1.37E+01 + HF-172 81.75 4.52 -1.49E-01 1.30E-01 3.53E-01 + LU-172 181.53 20.60 -1.40E-01 4.97E-02 7.98E-02 810.06 16.63 -1.10E-02 1.36E-01 912.12 15.25 1.30E-01 4.97E-02 7.98E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.99E-01 + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 - 306.78 94.00 -1.05E-03 2.73E-02 + TA-182 67.73 41.20 -3.19E-02 4.36E-02 4.36E-02						4 200 02				
873.19 11.50 7.45E-02 3.53E-01 996.32 10.30 -2.28E-01 2.48E-01 1004.76 17.90 0.00E+00 2.17E-01 1274.45 35.50 -9.81E-03 1.04E-01 + EU-155 86.53 30.90 2.35E-02 5.67E-02 105.30 20.70 -1.46E-02 6.79E-02 + EU-156 811.77 10.40 6.10E-02 2.62E-01 2.62E-01 1153.47 7.20 5.08E-02 4.07E-01 + H0-166M 184.41 72.60 3.79E-02 3.25E-02 280.45 29.60 2.78E-03 7.51E-02 410.94 11.10 4.01E-02 2.27E-01 + TM-171 66.72 0.14 -1.42E+01 1.37E+01 1.37E+01 + HF-172 81.75 4.52 -1.49E-01 1.30E-01 3.53E-01 + LU-172 181.53 20.60 -1.40E-01 4.97E-02 7.98E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 1093.66 62.50 -1.90E-03 4.97E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 1093.66 62.50 -1.90E-03 4.97E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 + TA-182 67.73 41.20 -3.19E-02 4.36E-02	+	EU-154				4.20E-02				
996.32 10.30 -2.28E-01 2.48E-01 2.044-01 104.76 17.90 0.00E+00 2.17E-01 1.04E-01 1.274.45 35.50 -9.81E-03 1.04E-01 1.04E-01 1.04E-01 1.04E-01 1.04E-01 1.04E-01 1.04E-01 1.04E-01 1.04E-01 1.04E-01 1.04E-01 1.04E-01 1.04E-01 1.04E-01 1.04E-01 1.04E-01 1.04E-02 1.05.30 20.70 -1.46E-02 6.79E-02 6.79E-02 1.05.30.71 8.90 -3.37E-02 4.07E-01 1.230.71 8.90 -3.37E-02 4.07E-01 1.230.71 8.90 -3.37E-02 3.25E-02 3.25E-02 2.27E-01 1.094 1.10 4.01E-02 2.27E-01 1.094 1.10 4.01E-02 2.27E-01 1.20E-01 1.37E+01 1.30E-01 1.										
1004.76										
1274.43 35.50 -9.81E-03 1.04E-01										
+ EU-155 86.50 30.90 2.35E-02 5.67E-02 6.79E-02 105.30 20.70 -1.46E-02 6.79E-02 + EU-156 811.77 10.40 6.10E-02 2.62E-01 2.62E-01 1153.47 7.20 5.08E-02 4.44E-01 1230.71 8.90 -3.37E-02 4.07E-01 + HO-166M 184.41 72.60 3.79E-02 3.25E-02 280.45 29.60 2.78E-03 7.51E-02 410.94 11.10 4.01E-02 2.27E-01 711.69 54.10 -4.43E-03 6.29E-02 + TM-171 66.72 0.14 -1.42E+01 1.37E+01 1.37E+01 + HF-172 81.75 4.52 -1.49E-01 1.30E-01 3.53E-01 125.81 11.30 -5.19E-02 + LU-172 181.53 20.60 -1.40E-01 4.97E-02 7.98E-02 810.06 16.63 -1.10E-02 1.56E-01 1093.66 62.50 -1.90E-03 4.97E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 1093.66 62.50 -1.90E-03 4.97E-02 + LU-173 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + HF-175 343.40 84.00 3.40E-03 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.83 86.00 6.84E-03 2.73E-02 + TA-182 67.75 41.20 -3.19E-02 4.36E-02 4.36E-02										
105.30	_	ជារៈ155				5.67E-02				
+ EU-156 811.77	Ŧ	F0-133				0.0.			ă.	
1153.47 7.20 5.08E-02 4.44E-01 1230.71 8.90 -3.37E-02 4.07E-01 + HO-166M 184.41 72.60 3.79E-02 3.25E-02 280.45 29.60 2.78E-03 7.51E-02 410.94 11.10 4.01E-02 2.27E-01 711.69 54.10 -4.43E-03 6.29E-02 + TM-171 66.72 0.14 -1.42E+01 1.37E+01 1.37E+01 + HF-172 81.75 4.52 -1.49E-01 1.30E-01 3.53E-01 125.81 11.30 -5.19E-02 1.30E-01 + LU-172 181.53 20.60 -1.40E-01 4.97E-02 7.98E-02 810.06 16.63 -1.10E-02 1.56E-01 912.12 15.25 1.30E-01 2.99E-01 1093.66 62.50 -1.90E-03 4.97E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 272.11 21.20 3.94E-02 + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.33 86.00 6.84E-03 2.63E-02 306.78 94.00 -1.05E-03 4.36E-02 4.36E-02	ı	тп_156				2 62E-01				
1230.71	т	F0-130			•	2.4==			•	
+ HO-166M 184.41 72.60 3.79E-02 3.25E-02 3.25E-02 280.45 29.60 2.78E-03 7.51E-02 410.94 11.10 4.01E-02 2.27E-01 711.69 54.10 -4.43E-03 6.29E-02 + TM-171 66.72 0.14 -1.42E+01 1.37E+01 1.37E+01 + HF-172 81.75 4.52 -1.49E-01 1.30E-01 3.53E-01 125.81 11.30 -5.19E-02 1.30E-01 + LU-172 181.53 20.60 -1.40E-01 4.97E-02 7.98E-02 810.06 16.63 -1.10E-02 1.56E-01 912.12 15.25 1.30E-01 2.99E-01 1093.66 62.50 -1.90E-03 4.97E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 272.11 21.20 3.94E-02 + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.33 86.00 6.84E-03 2.63E-02 306.78 94.00 -1.05E-03 4.36E-02 + TA-182 67.75 41.20 -3.19E-02 4.36E-02										
280.45	т.	HO-166M				3.25E-02				
## TM-171	T	110-10014				• • • • • • • • • • • • • • • • • • • •				
T11.69 T11.69										
+ TM-171 66.72 0.14 -1.42E+01 1.37E+01 1.37E+01 + HF-172 81.75 4.52 -1.49E-01 1.30E-01 3.53E-01 125.81 11.30 -5.19E-02 1.30E-01 + LU-172 181.53 20.60 -1.40E-01 4.97E-02 7.98E-02 810.06 16.63 -1.10E-02 1.56E-01 912.12 15.25 1.30E-01 2.99E-01 1093.66 62.50 -1.90E-03 4.97E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 272.11 21.20 3.94E-02 1.10E-01 + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.83 86.00 6.84E-03 2.63E-02 306.78 94.00 -1.05E-03 2.73E-02 + TA-182 67.75 41.20 -3.19E-02 4.36E-02 4.36E-02										
+ HF-172 81.75 4.52 -1.49E-01 1.30E-01 3.53E-01 + LU-172 181.53 20.60 -1.40E-01 4.97E-02 7.98E-02 810.06 16.63 -1.10E-02 1.56E-01 912.12 15.25 1.30E-01 2.99E-01 1093.66 62.50 -1.90E-03 4.97E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 272.11 21.20 3.94E-02 1.10E-01 1.10E-01 + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.83 86.00 6.84E-03 2.63E-02 2.73E-02 306.78 94.00 -1.05E-03 2.73E-02 4.36E-02 4.36E-02 4.36E-02	+	TM-171				1.37E+01	1.37E+01			
+ LU-172				4.52	-1.49E-01	1.30E-01	3.53E-01			
+ LU-172 181.53 20.60 -1.40E-01 4.97E-02 7.98E-02 810.06 16.63 -1.10E-02 1.56E-01 912.12 15.25 1.30E-01 2.99E-01 1093.66 62.50 -1.90E-03 4.97E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 272.11 21.20 3.94E-02 1.10E-01 + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.83 86.00 6.84E-03 2.63E-02 306.78 94.00 -1.05E-03 2.73E-02 + TA-182 67.73 41.20 -3.19E-02 4.36E-02 4.36E-02	·				-5.19E-02	•	1.30E-01			
810.06	+	T.II-172				4.97E-02	7.98E-02			
912.12 15.25 1.30E-01 2.99E-01 1093.66 62.50 -1.90E-03 4.97E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 272.11 21.20 3.94E-02 1.10E-01 + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.83 86.00 6.84E-03 2.63E-02 306.78 94.00 -1.05E-03 2.73E-02 + TA-182 67.73 41.20 -3.19E-02 4.36E-02 4.36E-02	•	10 1.12					1.56E-01			
1093.66 62.50 -1.90E-03 4.97E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 272.11 21.20 3.94E-02 1.10E-01 + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.83 86.00 6.84E-03 2.63E-02 306.78 94.00 -1.05E-03 2.73E-02 + TA-182 67.73 41.20 -3.19E-02 4.36E-02 4.36E-02							2.99E-01			
+ LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 272.11 21.20 3.94E-02 1.10E-01 + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.83 86.00 6.84E-03 2.63E-02 2.73E-02 306.78 94.00 -1.05E-03 2.73E-02 + TA-182 67.73 41.20 -3.19E-02 4.36E-02							4.97E-02			
+ HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.33 86.00 6.84E-03 2.63E-02 306.78 94.00 -1.05E-03 2.73E-02 + TA-182 67.73 41.20 -3.19E-02 4.36E-02 4.36E-02	+	LU-173			-1.06E-01	1.10E-01	2.61E-01			
+ HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.83 86.00 6.84E-03 2.63E-02 306.78 94.00 -1.05E-03 2.73E-02 + TA-182 67.73 41.20 -3.19E-02 4.36E-02		1:	272.11	21.20	3.94E-02		1.10E-01			
+ LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.83 86.00 6.84E-03 2.63E-02 306.78 94.00 -1.05E-03 2.73E-02 + TA-182 67.73 41.20 -3.19E-02 4.36E-02	+	н г −175			3.40E-03	3.10E-02	3.10E-02			
201.83 86.00 6.84E-03 2.63E-02 306.78 94.00 -1.05E-03 2.73E-02 + TA-182 67.73 41.20 -3.19E-02 4.36E-02	+		88.34	13.30	-2.61E-01	2.63E-02	1.22E-01	+ ,		
306.78 94.00 -1.05E-03 2.73E-02 + TA-182 67.73 41.20 -3.19E-02 4.36E-02				86.00	6.84E-03		2.63E-02			
+ TA-182 67.73 41.20 -3.19E-02 4.36E-02 4.36E-02	٠						2.73E-02			
A 44 - 85	+	TA-182		41.20	-3.19E-02	4.35E-02	4.36E-02			
			1121.30	34.90	-3.12E-02		8.11E-02			
1189.05 16.23 1.52E-02 2.15E-01				16.23	1.52E-02					
1221.41 26.98 -1.27E-02 1.41E-01			1221.41							
1231.02 11.44 8.58E-02 3.34E-01		•								
+ IR-192 308.46 29.68 8.56E-03 5.31E-02 8.51E-02	+	IR-192								
468.07 48.10 -2.89E-02 5.31E-02										
+ HG-203 279.19 77.30 -9.30E-03 2.73E-02 2.73E-02	+	HG-203	279.19	77.30						
+ BI-207 569.67 97.72 -7.07E-03 2.53E-02 2.53E-02	+	BI-207	569.67	97.72	-7.07E-03	2.53E-02				
1063.62 74.90 3.01E-03 4.77E-02			1063.62	74.90	3:01E-03		4.77E-02			

Analysis Report for 1603102-02

٠	BLANK								
	Nuclide Name	Energy (keV)	Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)			
+	TL-208	583.14	30.22	3.99E-02	1.07E-01	1.07E-01			
	14 200	860.37	4.48	-2.69E-01	·	5.92E-01			
		2614.66	35.85	1.72E-02	4 045 00	1.28E-01			
+	BI-210M	262.00	45.00	-1.34E-02	4.84E-02	4.84E-02 1.06E-01			
	PB-210	300.00 46.50	23.00 4.25	-2.01E-02 4.51E-01	7.39E-01	7.39E-01			
+	PB-210 PB-211	404.84	2.90	·	8.91E-01	8.91E-01			
т	PD-211	831.96	2.90	3.42E-01	0.510 0.	1.27E+00			
+	BI-212	727.17	11.80	-1.55E-02	2.59E-01	2.59E-01			
		1620.62	2.75	2.72E-01		1.38E+00			
+	PB-212	238.63	44.60	3.90E-02	6.07E-02	6.07E-02			
		300.09	3.41	-1.36E-01		7.14E-01			
+	BI-214	609.31	46.30	-6.16E-04	7.39E-02	7.39E-02			
		1120.29	15.10	7.78E-03		1.87E-01			
		1764.49.	15.80	1.16E-01		3.19E-01 8.41E-01			
_	PB-214	2204.22 295.21	4.98 19.19	-4.25E-01 -8.22E-02	7.74E-02	1.13E-01			
+	ED-714	351.92	37.19	1.31E-02	,.,10 02	7.74E-02			
+	RN-219	401.80	6.50	9.43E-02	4.02E-01	4.02E-01			
+	RA-223	323.87	3.88	-1.32E-01	6.61E-01	6.61E-01			
+	RA-224	240.98	3.95	3.10E-01	6.91E-01	6.91E-01	19.		
· +	RA-225	40.00	31.00	-2.17E-02	1.08E-01	1.08E-01			
+	RA-226	186.21	3.28	7.28E-01	7.21E-01	7.21E-01	20		
+	TH-227	50.10	8.40	-3.36E-01	2.18E-01	2.74E-01			
•	111 22,	236.00	11.50	8.35E-02		2.18E-01			
		256.20	6.30	2.76E-02		3.59E-01			
+	AC-228	338.32	11.40	9.21E-02	1.64E-01	2.49E-01			
		911.07	27.70	8.69E-02		1.64E-01			
		969.11	16.60	1.32E-01	1 717 01	2.52E-01			
+	TH-230	48.44	16.90	1.31E-01	1.71E-01	1.71E-01			
		62.85 67.67	4.60 0.37	4.10E-01 -3.55E+00		5.04E-01 4.85E+00			
+	PA-231	283,67	1.60	-1.98E-01	1.15E+00	1.38E+00			
	FR 251	302.67	2.30	4.98E-02		1.15E+00			
+	TH-231	25.64	14,70	4.95E-02	2.60E-01	1.57E+00			
		84.21	6.40	5.00E-02	,	2.60E-01			
+	PA-233	311.98	38.60	-1.21E-03	6.01E-02	6.01E-02			
+	PA-234	131.20	20.40	-5.78E-03	7.62E-02	7.62E-02			
		733.99	8.80	6.38E-02		3.63E-01			
		946.00	12.00	-2.55E-02	4 00-00	2.70E-01			
+		1001.03	0.92	2.29E+00	4.82E+00	4.82E+00			
+	TH-234	63.29	3.80	1.32E-01	5.89E-01	5.89E-01			
+	Ü−235	143.76	10.50	7.99E-02	1.63E-01	1.63E-01			
		163.35	4.70	-7.95E-03		3.62E-01 4.74E-01			
	NTO_227	205.31 86.50	4.70 12.60	1.75E-01 5.77E-02	1.39E-01				
+	NP-237		22.70	3.71E-02	7.15E-02				
+	NP-239	106.10	22.10	2.1TE'-A2	7,105-02	7.100 02			

BLANK

	Nuclide Name	Energy (keV)	Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
,	ND 220	228.18	10.70	8-495-02	7.15E-02	2.35E-01	
	NP-239	277.60	14.10	-5.93E-02	7,155 0%	1.63E-01	
+	AM-241	59.54	35.90	-3.50E-02	5.30E-02	5.30E-02	
+	AM-243	74.67	66.00	-7.66E-03	2.74E-02	2.74E-02	
+	CM-243	209.75	3.29	-3.11E-01	1.51E-01	6.06E-01	
		228.14	10.60	7.90E-02		2.19E-01	
		277.60	14.00	-5.51E-02		1.51E-01	

- = Nuclide identified during the nuclide identification
- = Energy line found in the spectrum
- = MDA value not calculated
- = Half-life too short to be able to perform the decay correction
- = CAUTION: MDA value is inconsistent with Currie MDA at 95% confidence level

NUCLIDE MDA REPORT

: \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB **Nuclide Library Used**

Nuclide Name	Energy (keV)	Yield(%)	Line MDA (pCi/grams)	Nuclide MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
BE-:7	477.59	10.42	2.55E-01	2.55E-01	-7.20E-02	1.13E-01
NA-22	1274.54	99.94	3.69E-02	3.69E-02	-3.49E-03	1.49E-02
NA-24	1368.53	99.99	5.28E-02	5.28E-02	2.25E-02	2.14E-02
	2754.09	99.86	5.53E-02		3.97E-03	1.96E-02
AL-26	1808.65	99.76	3.18E-02	3.18E-02	-1.37E-02	1.13E-02
K-40	1460.81	10.67	3.23E-01	3.28E-01	-3.82E-01	1.27E-01
AR-41	1293.64	99.16	4.52E-01	4.52E-01	1.23E-01	1.83E-01
TI-44	67.88	94.40	1.90E-02	1.90E-02	-1.39E-02	8.87E-03
	78.34	96.00	1.93E-02		5.16E-03	9.09E-03
SC-46	889.25	99.98	3.65E-02	2.83E-02	2.00E-02	1.56E-02
34	1120.51	99.99	2.83E-02		1.18E-03	1.10E-02
V-48	983.52	99.98	3.87E-02	3.33E-02	8.53E-03	1.65E-02
,	1312.10	97.50	3.33E-02	ا مر	-1.39E-03	1.29E-02
CR-51	320.08	9.83	2.51E-01	2.51E-01	5.08E-02	1.14E-01
MN-54	834.83	99.97	3.19E-02	3.19E-02	-4.59E - 03	1.35E-02
CO-56	846.75	99.96	3.74E-02	3.74E-02	1.58E-02	1.62E-02

Analysis Report for 1603102-02

Nuclide	Energy	Yield(%)	Line MDA	Nuclida MDA	Activity	Dec. Level
Name	(keV)		(pCi/grams)	(pCi/grams)	(pCi/grams)	(pCi/grams)
CO-56	1037.75	14.03	2.86E-01	3.74E-02	4.30E-03	1.22E-01
	1238.25	67.00	5.01E-02		9.55E-03	1.99E-02
	1771.40	15.51	1.60E-01		-1.38E-01	5.06E-02
	2598.48	16.90	1.86E-01		8.43E-03	5.89E-02
CO-57	122.06	85.51	2.08E-02	2.08E-02	1.10E-02	9.74E-03
	136.48	10.60	1.55E-01		1.51E-02	7.17E-02
CO-58	810.76	99.40	2.71E-02	2.71E-02	3.22E-03	1.11E-02
FE-59	1099.22	56.50	5.39E-02	5.39E-02	8.23E-04	2.14E-02
	1291.56	43.20	7.37E-02		3.07E-03	2.86E-02
CO-60	1173.22	100.00	5.48E-02	5.48E-02	4.06E-02	2.41E-02
	1332.49	100.00	5.61E-02		2.84E-02	2.44E-02
ZN-65	1115.52	50.75	6.06E-02	6.06E-02	-8.31E-03	2.40E-02
GA-67	93.31	35.70°	7.00E-02	7.00E-02	1.14E-01	3.34E-02
	208.95	2.24	9.23E-01		-7.65E-01	4.25E-01
	300.22	16.00	1.61E-01		-3.06E - 02	7.39E-02
SE-75	121.11	16.70	1.04E-01	2.81E-02	3.31E-02	4.84E-02
	136.00	59.20	2.81E-02		5.74E-03	1.31E-02
	264.65	59.80	3.84E-02		1.03E-02	1.77E-02
	279.53	25.20	8.81E-02		2.70E-02	4.02E-02
	400.65	11.40	2.29E-01		8.98E-03	1.03E-01
RB-82	776.52	13 ، 00	2.42E-01	2.422-01	-3.94E-02	1.03E-01
RB-83	520.41	46.00	5.94E-02	5.94E-02	-1.72E-02	2.61E-02
	529.64	30.30	9.16E-02		2.95E-03	4.03E-02
	552.65	16.40	1.52E-01		-5.09E-02	6.57E-02
KR-85	513.99	0.43	1.07E+01	1.07E+01	9.49E+00	4.99E+00
SR-85	513.99	99.27	4.71E-02	4.71E-02	4.16E-02	2.19E-02
88-Y	898.02	93.40	3.64E-02	3.64E-02	1.03E-02	1.54E-02
	1836.01	99.38	4.56E-92		2.32E-04	1.81E-02
NB-93M	16 57	9.43	3.61E+01	3.61E+01	2.31E+01	1.72E+01
NB-94	702.63	100.00	3.46E-02	3.45E-02	-6.32E-03	1.51E-02
	871.10	100.00	3.45E-02		-1.90E-02	1.47E-02
NB - 95	765.79	99.81	3.65E-02	3.65E-02	5.94E-03	1.59E-02
NB-95M	235.69	25.00	1.06E-01	1.06E-01	4.05E-02	4.93E-02
ZR-95	724.18	43.70	6.75E-02	5.09E-02	1.01E-03	2.87E-02
	756.72	55.30	5.09E-02	4 55- 64	-1.56E-02	2.13E-02
мо-,99	181.06	6.20	2.95E-01	1.95E-01	-1.68E-02	1.36E-01
ř.	739.58	12.80	1.95E-01		-6.91E-02	7.87E-02
1	778.00	4.50	7.73E-01	2 027 00	2.89E-01	3.31E-01
RU-103	497.08	89.00	3.23E-02	3.23E-02	-3.30E-03	1.44E-02
RU-106	621.84	9.80	2.52E-01	2.52E-01	-1.59E-01	1.07E-01 1.11E-02
AG-108M	433.93	89.90	2.53E-02	2.53E-02	-4.51E-03	1.62E-02
	614.37	90.40	3.65E-02		-1.06E-02 -8.64E-03	1.25E-02
	722.95	90.50	2.98E-02	4 4AR01	-0.04E-03 -1.77E-01	2.06E-01
CD-109	88.03	3.72	4.40E-01	4.40E-01	-1.77E-01 -1.90E-02	1.12E-02
AG-110M	657.75	93.14	2.67E-02	2.67E-02	-1.32E-02	1.12E-02 1.12E-01
	677.61	10.53	2.64E-01		-4.92E-02	8.69E-02
	706.67	16.46	2.00E-01		3.04E-02	6.73E-02
	763.93	21.98	1.55E-01		-3.09E-03	1.98E-02
	884.67	71.63	4.69E-02		-8.75E-03	3.84E-02
an 112	1384.27	23.94	1.08E-01 9.95E+01	9.95E+01	3.70E+01	4.57E+01
CD-113M	263.70	0.02	1.19E+00	3.74E-02	6.23E-02	5.49E-01
SN-113	255.12	64.90	3.74E-02	J. 74B 02	-1.47E-03	1.67E-02
	391.69	04.50	J. / HE-UZ		1.111 00	2.012 02

Analysis Report for 1603102-02

					•		
	Nuclide	Energy	Yield(%)	Line MDA	Nuclide MDA	Activity	Dec. Level
	Name	(keV)		(pCi/grams)	(pCi/grams)	(pCi/grams)	(pCi/grams)
	TE123M	159.00	84.10	1.79E-02	1.79E-02	-7.83E-03	8.20E-03
	SB-124	602.71	97.87	3.68E-02	3.68E-02	8.78E-03	1.65E-02
	DD 124	645.85	7.26	4.44E-01	; •	-4.65E-02	1.94E-01
		722.78	11.10	2.44E-01		-7.07E-02	1.02E-01
		1691.02	49.00	6.18E-02	•	1.33E-02	2.19E-02
	I - 125	35.49	6.49	7.30E-01	7.30E-01	-2.70E-01	3.41E-01
	SB-125	176.33	6.89	2.44E-01	8.40E-02	-3.39E-02	1.12E-01
	DD 123	427.89	29.33	8.40E-02		1.42E-02	3.73E-02
		463.38	10.35	3.17E-01		1.43E-01	1.44E-01
		600.56	17.80	1.97E-01		-1.89E-02	8.82E-02
		635.90	11.32	3.07E-01		-5.97E-02	1.36E-01
	SB-126	414.70	83.30	3.32E-02	3.28E-02	1.67E-02	1.50E-02
	DD 120	666.33	99.60	3.28E-02		-2.25E-02	1.43E-02
		695.00	99.60	3.49E-02		-1.01E-02	1.53E-02
		720.50	53.80	5.31E-02		-1.52E-03	2.24E-02
	SN-126	87.57	37.00	4.42E-02	4.42E-02	-1.78E-02	2.07E-02
	SB-127	473.00	25.00	1.13E-01	9.14E-02	3.13E-03	5.01E-02
	5D, 127	685.20	35.70	9.14E-02		-1.72E-02	3.96E-02
		783.80	14.70	2.42E-01		4.77E-03	1.04E-01
	I-129	29.78	57.00	1.77E-01	1.77E-01	-2.26E-02	8.36E-02
	1-123	33.60	13.20	4.31E-01		1.03E-02	2.02E-01
		39.58	7.52	4.49E-01		-9.04E-02	2.09E-01
	I-131	284.30	6.05	3.75E-01	3.27E-02	-5.38E-02	1.71E-01
	1-131	364.48	81.20	3.27E-02		1.24E-02	1.48E-02
		636.97	7.26	5.12E-01		6.58E-02	2.28E-01
		722.85	1.80	1.53E+00	•	-4.45E-01	6.42E-01
	TE-132	49.72	13.10	1.89E-01	2.79E-02	-2.31E-01	8.80E-02
	16 152	228.16	88.00	2.79E-02		1.01E-02	1.30E-02
	BA-133	81.00	33.00	5.04E-02	4.90E-02	-8.54E-03	2.36E-02
	DW 100	302.84	17.80	1.48E-01		6.43E-03	6.84E-02
		356.01	60.00	4.90E-02		1.99E-02	2.25E-02
+	I - 133	529.87 *		3.07E-02	3.07E-02	1.92E-02	1.29E-02
7	XE-133	81.00	38.00	4.54E-02	4.54E-02	-7.69E-03	2.12E-02
	CS-134	563.23	8.38	3.65E-01	3.55E-02	-3.89E-02	1.62E-01
	CD 154	569.32	15.43	1.60E-01		-8.27E-02	6.87E-02
		604.70	97.60	3.55E-02		-9.38E-03	1.58E-02
	ģ	795.84	85.40	3.88E-02		-8.58E-05	1.66E-02
	::	801.93	8.73	3.22E-01	•	6.85E-02	1.33E-01
	CS-135	268.24	16.00	1.45E-01	1.45E-01	1.59E-02	6.66E-02
	I-135	1131.51	22.50	3.50E-01	3.14E-01	5.94%-02	1.46E-01
	1-133	1260.41	28.60	3.14E-01		1.17E-01	1.33E-01
		1678.03	9.54	6.27E-01		-3.37E-02	2.22E-01
	CS-136	153.22	7.46	2.42E-01	2.20E-02	6.91E-02	1.13E-01
	CD-130	163.89	4.61	3.75E-01		-8.24E-03	1.73E-01
		176.55	13.56	1.26E-01		-6.65E-03	5.78E-02
	•	273.65	12.66	1.79E-01		-2.60E-02	8.18E-02
		340.57	48.50	5.53E-02		-1.32E-02	2.53E-02
		818.50	99.70	2.20E-02		-9.17E-04	8.53E-03
		1048.07	79.60	4.94E-02		2.55E-03	2.08E-02
		1235.34	19.70			9.18E-03	6.82E-02
	CS-137	661.65	85.12	4.05E-02	4.05E-02	1.79E-02	1.79E-02
	LA-138	788.74	34.00	1.09E-01	6.14E-02	2.13E-02	4.78E-02
	TW-130	1435.80	66.00	6.14E-02		8.70E-03	2.48E-02
		1422.00	50.00	0.410 02			

1603102-02

	Nuclide Name	Energy (keV)	Yield(%)	Line MDA (pCi/grams)	Nuclide MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
		(3.0.7)		,,	-		
(CE-139	165.85	80.35	2.12E-02	2.12E-02	-6.56E-04	9.77E-03
]	BA-140	162.64	6.70	2.54E-01	1.08E-01	3.59E-02	1.17E-01
		304.84	4.50	6.05E-01		2.76E-01	2.79E-01
		423.70	3.20	8.81E-01		-6.68E-02	3.97E-01
		437.55	2.00	1.38E+00		3.00E-01	6.17E-01 4.72E-02
		537.32	25.00	1.08E-01	4 245 00	3.01E-02	5.88E-02
:	LA-140	328.77	20.50	1.29E-01	4.34E-02	7.94E-03	3.21E-02
		487.03	45.50	7.10E-02		-2.91E-03 1.36E-02	4.42E-02
		815.85	23.50	1.09E-01		7.62E-03	1.72E-02
		1596.49	95.49	4.34E-02	3.21E-02	-5.76E-03	1.48E-02
	CE-141	145.44	48.40	3.21E-02	6.45E-02	-2.08E-02	9.16E-02
,	CE-143	57.36	11.80	1.96E-01 6.45E-02	0.436-02	1.55E-02	2.95E-02
		293.26	42.00 5.20	7.98E-01		2.04E-01	3.54E-01
	OF 144	664.55	10.80	1.54E-01	1.54E-01	4.22E-02	7.15E-02
	CE-144	133.54 476.78	42.00	6.02E-02	3.14E-02	-2.44E-02	2.65E-02
	PM-144	618.01	98.60	3.14E-02	J.14D 02	-4.42E-03	1.37E-02
		696.49	99.49	3.45E-02		-2.97E-03	1.51E-02
	PM-145	36.85	21.70	1.99E-01	1.04E-01	7.61E-02	9.32E-02
	FM-143	37.35	39.70	1.04E-01	1.011, 02	5.85E-02	4.88E-02
		42.30	15.10	1.90E-01	•	-4.64E-02	8.84E-02
		72.40	2.31	7.65E-01		-1.78E-01	3.58E-01
	PM-146	453.90	39.94	6.49E-02	6.49E-02	1.21E-02	2.88E-02
	EM 140	735.90	14.01	2.13E-01	•••	3.89E-02	9.05E-02
		747.13	13.10	2.31E-01		2.54E-02	9.81E-02
	ND-147	91.11	28.90	7.67E-02	7.67E-02	3.91E-02	3.65E-02
	ND 11,	531.02	13.10	2.26E-01		7.49E-02	1.00E-01
	PM-149	285.90	3.10	8.13E-01	8.13E-01	-5.41E-02	3.72E-01
	EU-152	121.78	20.50	8.66E-02	8.66E-02	4.56E-02	4.06E-02
	20	244.69	5.40	4.39E-01		-7.10E-02	2.03E-01
		344.27	19.13	1.29E-01		-5.90E-02	5.85E-02
		778.89	9.20	3.53E-01		1.78E-01	1.51E-01
		964.01	10.40	2.81E-01		3.98E-02	1.14E-01
		1085.78	7.22	3.81E-01		4.76E-02	1.48E-01
	. •	1112.02	9.60	3.65E-01		0.00E+00	1.50E-01
		1407.95	14.94	2.67E-01		2.84E-02	1.08E-01
	GD-153	97.43	31.30	4.52E-02	4.52E-02	-5.16E-02	2.09E-02
		103.18	22.20	6.48E-02	•	8.77E-03	3.00E-02
	EU-154	123.07	40.50	4.20E-02	4.20E-02	1.75E-02	1.96E-02
		723.30	19.70	1.37E-01		-3.97E-02	5.74E-02
		873,19	11.50	3.53E-01		7.45E-02	1.54E-01
	•	996.32	10.30	2.48E-01		-2.28E-01	9.63E-02
	4	1004.76	17.90	2.17E-01		0.00E+00	9.25E-02
		1274.45	35.50	1.04E-01	5 35 00	-9.81E-03	4.19E-02
	EU-155	86.50	30.90	5.67E-02	5.67E-02	2.35E-02	2.66E-02 3.13E-02
		105.30	20.70	6.79E-02	0 600 01	-1.46E-02	1.07E-01
	EU-156	811.77	10.40	2.62E-01	2.62E-01	6.10E-02	1.76E-01
		1153.47	7.20	4.44E-01		5.08E-02	1.65E-01
		1230.71	8.90	4.07E-01	2 057 00	-3.37E-02 3.79E-02	1.53E-01 1.53E-02
	HO-166M	184.41	72.60	3.25E-02	3.25E-02	2.78E-02	3.43E-02
		280.45	29.60	7.51E-02		4.01E-02	1.02E-01
		410.94	11.10	2.27E-01		-4.43E-03	2.75E-02
		711.69	54.10	6.29E-02	*	-4.4012-00	2.758 02

Analysis Report for 1603102-02

Nuclide Name	Energy (keV)	Yield(%)	Line MDA (pCi/grams)	Nuclide MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
 TM-171	66.72	0.14	1.37E+01	1.37E+01	-1.42E+01	6.41E+00
HF-172	81.75	4.52	3.53E-Q1	1.30E-01	-1.49E-01	1.64E-01
HF-1/2	125.81	11.30	1.30E-01	1.500	-5.19E-02	6.01E-02
LU-172	181.53	20.60	7.98E-02	4.97E-02	-1.40E-01	3.64E-02
TO-112	810.06	16.63	1.56E-01	4.5711 02	-1.10E-02	6.29E-02
	912.12	15.25	2.99E-01		1.30E-01	1.32E-01
·.	1093.66	62.50	4.97E-02	•	-1.90E-03	1.97E-02
LU-173	100.72	5.24	2.61E-01	1.10E-01	-1.06E-01	1,20E-01
TO-173	272.11	21.20	1.10E-01	11102 ,-	3.94E-02	5.03E-02
HF-175	343.40	84.00	3.10E-02	3.10E-02	3.40E-03	1.41E-02
LU-176	88.34	13.30	1.22E-01	2.63E-02	-2.61E-01	5.70E-02
10 170	201.83	86.00	2.63E-02		6.84E-03	1.23E-02
	305.78	94.00	2.73E-02		-1.05E-03	1.25E-02
TA-182	67.75	41.20	4.36E-02	4.36E-02	-3.19E-02	2.04E-02
18 102	1121.30	34.90	8.11E-02		-3.12E-02	3.14E-02
	1189.05	16.23	2.15E-01		1.52E-02	8.68E-02
	1221.41	26.98	1.41E-01		-1.27E-02	5.77E-02
	1231.02	11.44	3.34E-01		8.58E-02	1.37E-01
IR-192	308.46	29.68	8.51E-02	5.31E-02	8.56E-03	3.90E-02
111 132	468.07	48.10	5.31E-02	• • • • • • •	-2.89E-02	2.34E-02
HG-203	279.19	77.30	2.73E-02	2.73E-02	-9.3CE-03	1.24E-02
BI-207	569.67	97.72	2.53E-02	2.53E-02	-7,07E-03	1.08E-02
DI 207	1063.62	74.90	4.77E-02		3.01E-03	1.98E-02
TL-208	583.14	30.22	1.07E-01	1.07E-01	3.99E-02	4.74E-02
111 200	860.37	4.48	5.92E-01		-2.69E-01	2.39E-01
*	2614.66	35.85	1.28E-01		1.725-02	4.81E-02
BI-210M	262.00	45.00	4.84E-02	4.84E-02	-1.34E-02	2.22E-02
D1 210	300.00	23.00	1.06E-01	•	-2.01E-02	4.85E-02
PB-210	46.50	4.25	7.39E-01	7.39E-01	4.51E-01	3.49E-01
PB-211	404.84	2.90	8.91E-01	8.912-01	5.44E-02	4.00E-01
	831.96	2.90	1.27E+00		3.42E-01	5.48E-01
BI-212	727.17	11.80	2.59E-01	2.59E-01	-1.55E-02	1.11E-01
	1620.62	2.75	1.38E+00		2.72E-01	5.33E-01
PB-212	238.63	44.60	6.07E-02	6.07E-02	3.90E-02	2.84E-02
i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	300.09	3.41	7.14E-01		-1.36E-01	3.27E-01
BI-214	609.31	46.30	7.39E-02	7.39E-02	-6.16E-04	3.29E-02
	1120.29	15.10	1.87E-01		7.78E-03	7.24E-02
	1764.49	15.80	3.19E-01		1.16E-01	1.31E-01
) }-	2204.23	4.98	8.41E-01		-4.25E-01	3.15E-01
PB-214	295.21	19.19	1.13E-01	7.74E-02	-8.22E-02	5.13E-02
	351.92	37.19	7.74E-02		1.31E-02	3.55E-02
RN-219	401.80	6.50	4.02E-01	4.02E-01	9.43E-02	1.81E-01
RA-223	323.87	3.88	6.61E-01	6.61E-01	-1.32E-01	3.02E-01
RA-224	240.98	3.95	6.91E-01	6.91E-01	3.10E-01	3.24E-01
RA-225	40.00	31.00	1.08E-01	1.08E-01	-2.17E-02	5.00E-02
RA-226	186.21	3.28	7.21E-01	7.21E-01	7.28E-01	3.39E-01
TH-227	50.10	8.40	2.74E-01	2.18E-01	-3.36E-01	1.28E-01
	236.00	11.50	2.18E-01		8.35E-02	1.02E-01
	256.20	6.30	3.59E-01	٠	2.76E-02	1.65E-01
AC-228	338.32	11.40	2.49E-01	1.64E-01	9.21E-02	1.15E-01
	911.07	27.70	1.64E-01		8.69E-02	7.23E-02
	969.11	16.60	2.52E-01		1.32E-01	1.09E-01
TH-230	48.44	16.90	1.71E-01	1.71E-01	1.31E-01	8.07E-02
				2		

1603102-02

BLANK

Nuclide Name	Energy (keV)	Yield(%)	Line MDA (pCi/grams)	Nuclide MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
 TH-230	62.85	4.60	5.04E-01	1.71E-01	4.10E-01	2.39E-01
	67.67	0.37	4.85E+00	, y	-3.55E+00	2.27E+00
PA-231	283.67	1.60	1.38E+00	1.15E+00	-1.98E-01	6.31E-01
	302.67	2.30	1.15E+00		4.98E-02	5.29E-01
TH-231	25.64	14.70	1.57E+00	2.60E-01	4.95E-02	7.48E-01
	84.21	6.40	2.60E-01		5.00E-02	1.22E-01
PA-233	311.98	38.60	6.01E-02	6.01E-02	-1.21E-03	2.73E-02
PA-234	131.20	20.40	7.62E-02	7.62E-02	-5.78E-03	3.52E-02
	733.99	8.80	3.63E-01		6.38E-02	1.56E-01
	946.00	12.00	2.70E-01		-2.55E-02	1.12E-01
PA-234M	1001.03	0.92	4.82E+00	4.82E+00	2.29E+00	2.10E+00
TH-234	63.29	3.80	5.89E-01	5.89E-01	1.32E-01	2.79E-01
U-235	143.76	10.50	1.63E-01	1.63E-01	7.99E-02	7.56E-02
	163.35	4.70	3.62E-01		-7.95E-03	1.67E-01
	205.31	4.70	4.74E-01		1.75E-01	2.21E-01
NP-237	86.50	12.60	1.39E-01	1.39E-01	5.77E-02	6.53E-02
NP-239	106.10	22.70	7.15E-02	7.15E-02	3.71E-03	3.32E-02
	228.18	10.70	2.35E-C1		8.49E-02	1.09E-01
	277.60	14.10	1.63E-01		-5.93E-02	7.41E-02
AM-241	59.54	35.90	5.30E-02	5.30E-02	-3.50F-02	2.48E-02
AM-243	74.67	66.00	2.74E-02	2.74E-02	-7.66E-03	1.29E-02
CM-243	209.75	3.29	6.06E-01	1.51E-01	-3.11E-01	2.80E-01
	228.14	10.60	2.19E-01		7.90E-02	1.02E-01
	277.60	14.00	1.51E-01		-5.51E-02	6.88E-02

+ = Nuclide identified during the nuclide identification

* = Energy line found in the spectrum

> = MDA value not calculated

@ = Half-life too short to be able to perform the decay correction

No Action Level results available for reporting purposes.

DATA REVIEW COMMENTS REPORT

Creation Date

Comment

User

1603102-02

BLANK

No Data Review Comments Entered.

Sample Title: BLANK

Elapsed Live time: 3600 Elapsed Real Time: 3612

Channel	01607927916285763311571749959079680637353496893	$ \begin{array}{c} -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 $	115319393935841350 12319393935841350 12319393935841350	0 16351408310303115188135279465667746244782157206	0731405745394236130768564595980663434555974753	055575714907445023321681798768007667706723345478	05554602046876915439884808305618945746584763437	045681276449203908211312516980404457455055774936

Channel	Data Rep	port		4/13/2016	2:15:	56 PM		Page 2	2
369:	3	3.	4	7	C	4	3	2	
·	Sample	Title:	BLANK		•	:			
Channell 3833:::::::::::::::::::::::::::::::::		3132263522232342222353403020335526121121533411111012143	434202322521654345241413222305413312012253421320003231	2366346344663352122333:11531033102441033131211212242223	232526432373092463511111424345413353430322032403421111		324325141341343471026332265406430311322225522200041033		

Channel	Data R	eport		4/13/2016	6 2:1	5:56 PM		Page :
801:	0	2	0	1	1	, 1	0	1
	Sampl	e Title:	BLANK					
Channel 8077: 8253: 841: 8253: 849: 8573: 849: 8573: 88975: 88975: 88975: 89953		1 0 1 0	221003302320120011102131212301122101901111031211200	301101303023110110000200311222202110111110100050102011	10111111410011121201100102002110201210101111261001010	101030041002300140010021225231222520002032100152111202	1 1 1 4 2 1 1 1 2 0 2 0 1 8 0 2 1 4 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0	1 0 3 1 1 2 3 0 1 4 0 1 2 1 2 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1

Channel	Data	Rep	ort				4/13/2016	2:15	:56 PM			Page (
1233:		0		1		0	0	0	1	:	1	0
	Sam	ple	Titl	.e:	BLAN	K						
Channel 1241: 1249: 1257: 1265: 1273: 1281:		- 3 1 1 1 0		0 1 1 0 2 2		- · 0 1 2 1 0	0 1 3 1 0 1	2 1 1 0 0	0 0 2 1 1 0		- 2 0 0 0 0 0	 1 1 0 2 2 0
		010010401010011100000000300001011000		2		0	012101141120200000000000000011200040000	0020012410000001003001020011001101000010	10001010200200010101302100003110000001000		Ö	22020002200011000210020101210000011000000
1609: 1617: 1625: 1633: 1641: 1649: 1657:		0 0 0 0 0 0		0 0 0 1 0 0		1 0 1 0 0 2	0 1 0 3 0 2 0 0 0	0 1 0 1 0 0 1 0	1 1 0 1 0 0 2 0		0 0 0 1 1 0	1 0 0 1 0 1

Page 4

Channel	Data	Report		A.	4/13/2016	2:15:	56 PM		·Page	5
1665:		0	3	1	0	1	1	. 0	. 0	
	Samp	ole Tit]	Le:	BLANK	•					
Channel 1673: 1689: 1697: 1705: 1713: 1721: 1729: 1745: 1753: 1769: 17785: 1769: 17785: 1785: 1809: 18		000001020100000000100000000000000000000				000000100003000100001010000010000100	2000001120100000100010100000011000001100001	0000300101000000100000001100002020100000101000000		

Channel	Data	Rej	port		4/13/201	16 2:15	5:56 ⊕M		Page 6	ŝ
2097:		0	0	0	0	0	0,	0	1	
	Sam	ple	Title:	BLANK						
Channell 2105: 21131: 2129: 2129: 2137: 2145: 2153: 2169: 2153: 2169: 2153: 2169: 2153: 2169: 2153: 2169: 21		-0000000100001000000000000001000000100000		001000020001110100100001000010000000000	010100000100001000010000000000000000000	100000010001000010001100000000000000000	001000010000000000000000000000000000000	000000100001110011000000011100001000000	0 0 0	

Channel	Data	Rep	port		4/13/2016	5 2:15	5:56 PM		Page 7
2529:		0	0.	3.	0	0	- 0	0	1
	Samp	ple	Title:	BLANK			÷		
Channel 2537: 25453: 255697: 255697: 255697: 25560097: 25560097: 25560097: 25560097: 2566097: 2566097: 2566097: 2566097: 2566097: 2566097: 2566097: 2566097: 2566097: 2576097:		-00000000000000010000000000000000000000	100010001010001100100000000000000000000	010100000000000000000000000000000000000	000000100010000100000100000000000000000	000000100000000000000000000000000000000	010111101200001001001101000100100000000	000000010000010000010000100000000000000	1 1 0 0 0 1 1 1 0 2 0 0 0 0 0 0 0 0 0 0

Channel	Data	Reg	oort		4/13/2016	2:15:5	56 PM		Page	1
2961:		0	0	. 0	ð	O	0	0	0	
•	Samp	ple	Title:	BLANK						
Channel 29677: 2985: 29977: 2985: 29973: 30017: 300		-00000000000000110000000100000000000000	000000000000000000000000000000000000000		000000010010000000000000000000000000000	020000000000000000000000000000000000000	100000100000000000000000000000000000000	000000000000000000000000000000000000000	100000000100000000000001000010000000000	

Channel	Data Rep	port		4/13/2016	2:15:	:56 PM		Page	9
3393:	1	0	0	0	0	0	0	. 0	
	Sample	Title:	BLANK						
Chanell 3401: 3425: 3427		110001010100000000000000000000000000000	100000101000000000000000000000000000000		00000000000000001100000001000001000000	000001000000010010000000000000000000000	000002000000001010000000000000000000000	0001010100000000000001100000010000010000	

Channel	Data Repor	t .		4/13/2016	2:15:	56 PM		Page 10
3825:	0	0	0	0	0	1	Ö	0
	Sample Ti	tle:	BLANK					
Channel 3841: 3849: 3857: 3865: 3873: 3897: 3995: 39953: 39953: 39953: 39953: 39953: 39953: 4009: 4017: 4023: 4033: 4041:					0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0			
4049: 4057: 4065: 4073: 4081:	0 0 0 1 0	1 0 0 0 1	0 1 1 0	0 0 0	1 0 0 0 0	0 0 0 0	1 0 0 0 0 0	0 0 0 0
4089:	0	0	0	0	0	0	U	0

0000035733.CNF Live Time :3600.000 sec Real Time :3611.940 sec Start: 1: 0.7(keV) Stop : 4096:4097.0(keV) Acq. Start :Wed Apr 13 13:15:30 2016 105-104-Counts-log scale 102-2500 2000 Channel 4000 3500 500 3000 1500 1000 ROI Type: 2 ROI Type: 1

1603102-03

SEDIMENT 2016-03-16A

GAMMA SPECTRUM ANALYSIS

Sample Identification

: 1603102-03

Sample Description

: SEDIMENT 2016-03-16A

. Sample Type

: SOIL

Sample Size

Facility

; 4.476E+02 grams

: Countroom

Sample Taken On

: 3/16/2016 1:44:26PM

Acquisition Started

: 4/13/2016 7:02:38AM

Procedure Operator

: GAS-1402 pCi

Detector Name

: Administrator : GE3

Geometry

: GAS-1402

Live Time

: 3600.0 seconds : 3612.5 seconds

Real Time Dead Time

: 0.35 %

Peak Locate Threshold

: 2.50

Peak Locate Range (in channels)

: 1 - 4096 : 9 - 4096

Peak Area Range (in channels) Identification Energy Tolerance

1.000 keV

Energy Calibration Used Done On. Efficiency Calibration Used Done On : 10/25/2014

: 10/25/2014

Efficiency Calibration Description

Sample Number

: 35692

PEAK-TO-TOTAL CALIBRATION REPORT

Peak-to-Total Efficiency Calibration Equation

1603102-03

SEDIMENT 2016-03-16A

PEAK LOCATE REPORT

Peak Locate Performed on

: 4/13/2016 8:02:52AM

Peak Locate From Channel

: 1 : 4096

Peak Locate To Channel Peak Search Sensitivity

: 2.50

Peak No.	Energy (keV)	Centroid Channel	Centroid Uncertainty	Peak Significance
1	46.79	47.02	0.0000	0.00
2	62.93	63.15	0.0000	0.00
3	75.10	75.32	0.0000	0.00
4	77.58	77.79	0.0000	0.00
5	87.94	88.15	0.0000	0.00
6	92.92	93.13	0.0000	0.00
7	129.32	129.50	0.0000	0.00
8	186.62	186.78	0.0000	0.00
9	209.13	209.27	0.000	0.00
10	239.02	239.15	. 0,000	0.00
11	242.23	242.36	0.000	0.00
12	295.59	295.69	0.000	0.00
13	338.65	338.73	0.000	0.00
14	352.33	352.40	0.0000	0.00
15	384.73	384.78	0.000	0.00
16	410.28	410.33	0.000	0.00
17	463.64	463.65	0.000	0.00
18	511.69	511.68	0.0000	0.00
19	535.95	535.93	0.0000	0.00
20	579.46	579.42	0.0000	0.00
21	583.44	583.40	0.0000	0.00
22	604.72	604.66	0.0000	0.00
23	609.63	609.57	0.0000	0.00
24	651.87	651.80	0.0000	0.00
25	657.08	657.00	0.0000	0.00
26	714.75	714.64	0.0000	0.00
27	727.73	727.62	0.0000	0.00
28	769.79	769.65	0.0000	0.00
29	795.96	795.82	0.0000	0.00
30	911.20	911.01	0.0000	0.00
31	933.87	933.66	0.0000	0.00
32	970.18	969.96	0.0000	0.00
33	1011.24	1011.00	0.0000	0.00
34	1115.57	1115.28	0.0000	0.00
35	1120.65	1120.36	0.0000	0.00
36	1238.10	1237.77	0.0000	0.00
37	1248.34	1248.00	0.0000	0.00
38	1255.45	1255.11	0.0000	0.00
39	1378.35	1377.96	0.0000	0.00
40	1433.11	1432.70	0.0000	0.00
41	1460.86	1460.44	0.0000	0.00
42	1508.15	1507.71	0.0000	0.00

1603102-03

SEDIMENT 2016-03-16A

Peak No.		Energy (keV)	Centroid Channel	Centroid Uncertainty	Peak Significance
	43	1589.28	1588,81	0,0000	0.00
	44	1728.57	1728.05	0.0000	0.00
	45	1764.55	1764.02	0.000	0.00
	46	1846.61	1846.05	0.000	0.00
	47	2119.62	2118.98	0.000	0.00
	48	2204.93	2204.26	0.000	0.00
	49	2447.24	2446.50	0.000	0.00
	50	2614.27	2613.49	0.0000	0.00

^{? =} Adjacent peak noted Errors quoted at 2.000sigma

SEDIMENT 2016-03-16A

PEAK ANALYSIS REPORT

Peak Analysis Performed on

: 4/13/2016 8:02:52AM

Peak Analysis From Channel Peak Analysis To Channel : 1 : 4096

	Peak No.	Energy (keV)	ROI start	RO! end	Peak Centroid	Net Peak Area	Net Area Uncertainty	Continuum Counts	FWHM (keV)
	1	46.79	44 -	49	47.02	2.14E+02	64.89	6.75E+02	1.44
	2	62.93	59 –	66	63.15	1.60E+02	88.70	1.21E+03	1.65
M	3-	75.10	71 -	81	75.32	3.21E+02	78.76	8.95E+02	1.83
m	4	77.58	71 -	81	77.79	5 93E+02	86.62	8.80E+02	1.83
M	5	87.94	83 -	97	88.15	1.72E+02	64.43	7.30E+02	1.68
m	6	92.92	83 -	97	93.13	2.15E+02	65.60	6.23E+02	1.69
	7	129.32	127 -	132	129.50	5.60E+01	55.44	5.70E+02	2.26
	8	186.62	183 -	191	186.78	1.75E+02	72.10	6.91E+02	1.80
	9	209.13	205 -	213	209.27	1.05E+02	66.23	6.07E+02	2.18
M	10	239.02	235 -	248	239.15	5.56E+02	60.60	3.15E+02	1.94
m	11	242.23	235 -	248	242.36	1.89E+02	63.81	2.79E+02	2.08
	12	295.59	292 -	300	295.69	2.15E+02	64.12	5.11E+02	1.45
	13	338.65	334 -	342	338.73	8.16E+01	48.68	3.13E+02	1.64
	14	352.33	348 -	356	352.40	4.78E+02	60.52	2.69E+02	1.95
	15	384.73	379 -	393	384.78	5.03E+01	61.32	3.73E+02	5.64
	16	410.28	407 -	413	410.33	3.24E+01	34.38	1.89E+02	1.66
	17	463.64	460 -	467	463.65	3.20E+01	35.04	1.82E+02	1.50
	18	511.69	506 -	517	511.68	1.18E+02	45.21	1.93E+02	3.08
	19	535.95	532 -	540	535.93	2.70E+01	30.45	1.26E+02	2.15
Μ	20	579.46	578 -	588	579.42	1.38E+01	12.30	3.79E+01	2.40
m	21	583.44	578 -	588	583.40	1.49E+02	30.28	5.98E+01	1.85
Μ	22	604.72	603 -	617	604.66	1.22E+01	16.12	4.86E+01	2.66
m	23	609.63	603 -	617	609.57	3.46E+02	41.32	8.22E+01	1.96
Μ	24	651.87	648 -	664	651.80	2.14E+01	23.54	8.13E+01	2.23
m	25	657.08	648 -	664	657.00	1.85E+01	21.10	7.55E+01	2.03
	26	714.75	709 -	722	714.64	6.04E+01	38.04	1.37E+02	10.17
	27	727.73	725 -	731	727.62	2.91E+01	24.30	8.37E+01	1.75
	28	769.79	763 -	782	769.65	4.13E+01	51.85	2.11E+02	7.33
	29	795.96	792 -	799	795.82	2.27E+01	21.63	6.06E+01	2.16
	30	911.20	907 -	916	911.01	7.92E+01	30.82	9.16E+01	1.98
	31	933.87	928 -	939	933.66	3.49E+01	22.89	4.83E+01	7.18
	32	970.18	965 -	976	969.96	5.19E+01	33.11	1.02E+02	2.53
m	33	1011.24	998 -	1013	1011.00	1.74E+01	12.57	1.61E+01	2.22
M	34	1115.57	1114 -	1125	1115.28	1.56E+01	8.49	1.77E+01	2.74
m	35	1120.65	1114 -		1120.36	9.01E+01	26.68	6.37E+01	2.68
М	36	1238.10	1223 -		1237.77	2.80E+01	22.88	6.46E+01	3.09
m	37	1248.34	1223 -	1259	1248.00	1.51E+01	17.76	4.11E+01	2.33
m	38	1255.45	1223 -	1259	1255.11	1.76E+01	20.58	4.87E+01	3.10
	39	1378.35	1372 -	1384	1377.96	2.31E+01	19.16	3.18E+01	2.70
	40	1433.11	1429 -	1435	1432.70	8.00E+00	10.44	1.40E+01	2.91

1603102-03

SEDIMENT 2016-03-16A

Peak No.	Energy (keV)	ROI start	ROI end	Peak Centroid	Net Peak Area	Net Area Uncertainty	Continuum Counts	FWHM (keV)
41	1460.86	1.453 -	1466	1460.44	3.55E+02	41.63	3.46E+01	2.33
42	1508.15	1502 -	1511	1507.71	2.17E+01	12.57	1.06E+01	2.86
43	1589.28	1584 -		1588.81	1.70E+01	12.81	1.20E+01	3.29
44	1728.57	1723 -	1732	1728.05	1.80E+01	11.92	1.00E+01	3.46
45	1764.55	1759 -	1767	1764.02	4.01E+01	19.12	3.19E+01	2.94
46	1846.61	1842 -	1850	1846.05	1.10E+01	11.52	1.40E+01	4.59
47	2119.62	2115 -	2123	2118.98	8.17E+00	9.41	7.67E+00	2.76
48	2204.93	2199 -	2210	2204.26	1.75E+01	10.77	5.05E+00	3.92
49	2447.24	2443 -		2446.50	8.00E+00	5.66	0.00E+00	1.33
50	2614.27	2609 -		2613.49	4.70E+01	13.71	0.00E+00	2.45

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

PEAK ANALYSIS REPORT

Peak Analysis Performed on

: 4/13/2016 8:02:52AM

Peak Analysis From Channel

Peak Analysis To Channel

: 4096

	Peak No.	Energy (keV)	ROI start	ROI end	Net Peak Area	Net Area Uncertainty	Continuum Counts	Critical Level
	1	46.79	44 -	49	2.14E+02	64.89	6.75E+02	4.76E+01
	2	62.93	59 -	66	1.60E+02	88.70	1.21E+03	6.99E+01
М	3	75.10	71 -	81	3.21E+02	78.76	8.95E+02	4.92E+01
m	4	77.58	71 -	81	5.93E+02	86.62	8.80E+02	4.88E+01
M	5	87.94	83 -	97	1.72E+02	64.43	7.30E+02	4.44E+01
m	6	92.92	83 -	97	2.15E+02	65.60	6.23E+02	4.10E+01
	7	129.32	127 -	132	5.60E+01	55.44	5.70E+02	4.39E+01
	8	186.62	183 -	191	1.75E+02	72.10	6.91E+02	5.51E+01
	9	209.13	205 -	213	1.05E+02	66.23	6.07E+02	5.18E+01
М	10	239.02	235 -	248	5.56E+02	60.60	3.15E+02	2.92E+01
m	11	242.23	235 -	248	1.89E+02	63.81	2.79E+02	2.75E+01
111	12	295.59	292 -	300	2.15E+02	64.12	5.11E+02	4.69E+01
	13	338.65	334 -	342	8.16E+01	48.68	3.13E+02	3.72E+01
	14	352.33	348 -	356	4.78E+02	60.52	2.69E+02	3.44E+01
	15	384.73	379	393	5.03E÷01	61.32	3.73E+02	4.90E+01
	16	410.28	407 -	413	3.24E+01	34.38	1.89E+02	2.67E+01
	17	463.64	460	467	3.2CE+01	35.04	1.82E+02	2.73E+01

1603102-03

SEDIMENT 2016-03-16A

	Peak No.	Energy (keV)	ROI start	ROI end	Net Peak Area	Net Area Uncertainty	Continuum Counts	Critical Level
	18	511.69	506 -	517	1.18E+02	45.21	1.93E+02	3.26E+01
	19	535.95	532 -	540	2.70E+01	30.45	1.26E+02	2.35E+01
М	20	579.46	578 -	588	1.38E+01	12.30	3.79E+01	1.01E+01
m	21	583.44	578 -	588	1.49E+02	30.28	5.98E+01	1.27E+01
М	22	604.72	603 -	617	1.22E+01	16.12	4.86E+01	1.15E+01
m	23	609.63	603 -	617	3.46E+02	41.32	8.22E+01	1.49E+01
M	24	651.87	648 -	664	2.14E+01	23.54	8.13E+01	1.48E+01
m	25	657.08	648 -	664	1.85E+01	21.10	7.55E+01	1.43E+01
	26	714.75	709 -	722	6.04E+01	38.04	1.37E+02	2.85E+01
	27	727.73	725 -	731	2.91E+01	24.30	8.37E+01	1.79E+01
	28	769.79	763 -	782	4.13E+01	51.85	2.11E+02	4.13E+01
	29	795.96	792 -	799	2.27E+01	21.63	6.06E+01	1.60E+01
	30	911.20	907 -	916	7.92E+01	30.82	9.16E+01	2.07E+01
	31	933.87	928 -	939	3.49E+01	22.89	4.83E+01	1.61E+01
	32	970.18	965 -	976	5,19E+01	33.11	1.02E+02	2.45E+01
ın	33	1011.24	998 -	1013	1.74E+01	12.57	1.61E+01	6.59E+00
М	34	1115.57	1114 -	1125	1.56E+01	8.49	1.77E+01	6.93E+00
m	35	1120.65	1114 -	1125	9.01E+01	26.68	6.37E+01	1.31E+01
M	36	1238.10	1223 -	1259	2.80E+01	22.88	6.46E+01	1.32E+01
m	37	1248.34	1223 -	1259	1.51E+01	17.76	4.11E+01	1.05E+01
m	38	1255.45	1223 -	1259	1.76E+01	20.58	4.87E+01	1.15E+01
	39	1378.35	1372 -	1384	2.31E+01	19.16	3.18E+01	1.36E+01
	40	1433.11	1429 -	1435	8.00E+00	10.44	1.40E+01	7.21E+00
	41	1460.86	1453 -	1466	3.55E+02	41.63	3.46E+01	1.46E+01
	42	1508.15	1502 -	1511	2.17E+01	12.57	1.06E+01	6.94E+00
	43	1589.28	1584 -	1595	1.70E+01	12.81	1.20E+01	8.05E+00
	44	1728.57	1723 -	1732	1.80E+01	11.92	1.00E+01	6.88E+00
	45	1764.55	1759 -	1767	4.01E+01	19.12	3.19E+01	1.18E+01
	46	1846.61	1842 -	1850	1.10E+01	11.52	1.40E+01	7.74E+00
	47	2119.62	2115 -	2123	8.17E+00	9.41	7.67E+00	6.14E+00
	48	2204.93	2199 -	2210	1.75E+01	10.77	5.05E+00	5.58E+00
	49	2447.24	2443 -	2449	8.00E+00	5.66	0.00E+00	0.00E+00
	50	2614.27	2609 -	2617	4.70E+01	13.71	0.00E+00	0.00E+00

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

SEDIMENT 2016-03-16A

PEAK WITH NID REPORT

Peak Analysis Performed on

: 4/13/2016 8:02:52AM

Peak Analysis From Channel

: 1

Peak Analysis To Channel

: 4096

Tentative NID Library

: \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB

: 1.000 keV Peak Match Tolerance

	Peak No.	Energy (keV)	RC! start	ROI end	Peak Centroid	Net Peak Area	Net Area Uncertainty	Continuum Counts	Tentative Nuclide
	1	46.79	44 -	49	47.02	2.14E+02	64.89	6.75E+02	PB-210
	2	62.93	59 -	- 66	63.15	1.60E+02	88.70	1.21E+03	TH-230 TH-234
M	3	75.10	71 -	81	75.32	3.21E+02	78.76	8.95E+02	AM-243
m	4	77.58	71 -	81	77.79	5.93E+02	86.62	8.80E+02	TI - 44
М	5	87.94	83 -	97	88.15	1,72E+02	64.43	7.30E+02	CD-109
• •									SN-126
									LU-176
m	6	92.92	83 -	97	93.13	2.15E+02	65.60	6.23E+02	GA-67
	7	129.32	127 -	132	129.50	5.60E+01	55.44	5.70E+02	
	8	186.62	183 -	191	186.78	1.75E+02	72.10	6.91E+02	RA-226
	9	209.13	205 -	213	209.27	1.05E+02	66.23	6.07E+02	GA-67
									CM-243
М	10	239.02	235 -	248	239.15	5.56E+02	60.60	3.15E+02	PB-212
m	11	242.23	235 -	248	242.36	1.89E+02	63.81	2.79E+02	011
	12	295.59	292 -	300	295.69	2.15E+02	64.12	5.11E+02	PB-214
	13	338.65	334 -	342	338.73	8.16E+01	48.68	3.13E+02	AC-228
	14	352.33	348 -	356	352.40	4.78E+02	60.52	2.69E+02	PB-214
	15	384.73	379 -	393	384.78	5.03E+01	61.32	3.73E+02	
	16	410.28	407 -	413	410.33	3.24E+01	34.38	1.89E+02	HO-166M
	17	463.64	460 -	467	463.65	3.20E+01	35.04	1.82E+02	SB-125
	18	511.69	506 -	517	511.68	1.18E+02	45.21	1.93E+02	
	19	535.95	532 -	540	535.93	2.70E+01	30.45	1.26E+02	
M	20	579.46	578 -	588	579.42	1.38E+01	12.30	3.79E+01	
m	21	583.44	578 -	588	583.40	1.49E+02	30.28	5.98E+01	TL-208
Μ	22	604.72	603 –	617	604.66	1.22E+01	16.12	4.86E+01	CS-134
m	23	609.63	603 -	617	609.57	3.46E+02	41.32	8.22E+01	BI-214
M	24	651.87	648 -	664	651.80	2.14E+01	23.54	8.13E+01	AG-110M
m	25	657.08	648 -	664	657.00	1.85E+01	21.10	7.55E+01	
	26	714.75	709 -	722	714.64	6.04E+01	38.04	1.37E+02 8.37E+01	BI-212
	27	727.73	725 -	731	727.62	2.91E+01	24.30	2.11E+02	
	28	769.79	763 -	782	769.65	4.13E+01	51.85	6.06E+01	CS-134
	29	795.96	792 -	799	795.82	2.27E+01	21.63 30.82	9.16E+01	AC-228
	30	911.20	907 -	916	911.01	7.92E+01	30.82	9.105401	LU-172
	31	933.87	928 -	939	933.66	3.49E+01	22.89	4.83E+01	
	32	970.18	965 -	976	969.96	5.19E+01	33.11	1.02E+02	
m	33	1011.24	998 -	1013	1011.00	1.74E+01	12.57	1.61E+01	
М	34	1115.57	1114 -	1125	1115.28	1.56E+01	8.49	1.77E+01	ZN-65
m	35	1120.65	1114 -	1125	1120.36	9.01E+01	26.68	6.37E+01	SC-46 BI-214

1603102-03

SEDIMENT 2016-03-16A

	Peak No.	Energy (keV)	ROI start	ROI end	Peak Centroid	Net Peak Area	Net Area Uncertainty	Continuum Counts	Tentative Nuclide
_		:						···	TA-182
М	36	1238.10	1223 -	1259	1237.77	2.80E+01	22.88	6.46E+01	CO-56
m	37	1248.34	1223 -	1259	1248.00	1.51E+01	17.76	4.11E+01	
m	38	1255.45	1223 -	1259	1255.11	1.76E+01	20.58	4.87E+01	
111	39	1378.35	1372 -	1384	1377.96	2.31E+01	19.16	3.18E+01	
	40	1433.11	1429 -	1435	1432.70	8.00E+00	10.44	1.40E+01	
	41	1460.86	1455 -	1466	1460.44	3.55E+02	41.63	3.46E+01	K-40
	42	1508.15	1502 -	1511	1507.71	2.17E+01	12.57	1.06E+01	
	43	1589.28	1584 -	1595	1588.81	1.70E+01	12.81	1.20E+01	
	44	1728.57	1723 -	1732	1728.05	1.80E+01	11.92	1.00E+01	
	45	1764.55	1759 -	1767	1764.02	4.01E+01	19.12	3.19E+01	BI-214
	46	1846.61	1842 -	1850	1846.05	1.10E+01	11.52	1.40E+01	
	47	2119.62	2115 -	2123	2118.98	8.17E+00	9.41	7.67E+00	
	48	2204.93	2199 -	2210	2204.26	1.75E+01	10.77	5.05E+00	BI-214
	49	2447.24	2443 -	2449	2446.50	8.00E+00	5,66	0.00E+00	
	50	2614.27	2609 -	2617	2613.49	4.70E+01	13.71	0.00E+00	TL-208

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

PEAK EFFICIENCY REPORT

Peak Analysis Performed on

: 4/13/2016 8:02:52AM

	Peak No.	Energy (keV)	Net Peak Area	Net Area Uncertainty	Peak Efficiency	Efficiency Uncertainty
	1	46.79	2.14E+02	64.89	1.52E-02	1.58E-03
	2	62.93	1.60E+02	88.70	2.15E-02	1.70E-03 2.10E-03
M	3	75.10	3.21E+02	78.76	2.37E-02	2.10E-03 2.18E-03
m	4	77.58	5.93E+02	86.62	2.39E-02	
M	5	87.94	1.72E+02	64.43	2.44至-02	2.52E-03
m	6	92.92	2.15E+02	65.60	2.44E-02	2.41E-03
	7	129.32	5.60E+01	55.44	2.25E-02	1.70E-03
	8	186.62	1.75E+02	72.10	1.82E-02	1.42E-03
	9	209.13	1.05E+02	66.23	1.68E-02	1.31E-03
М	10	239.02	5.56E+02	60.60	1.52E-02	1.18E-03
m	11	242.23	1.89E+02	63.81	1.50E-02	1.16E-03
111	12	295.59	2.15E+02	64.12	1.28E-02	9.74E-04
	13	338.65	8.16E+01	48.68	1.14E-02	9.12E-04
:	14	352.33	4.78E+02	60.52	1.10E-02	8.93E-04

1603102-03

SEDIMENT 2016-03-16A

	Peak No.	Energy (keV)	Net Peak Area	Net Area Uncertainty	Peak Efficiency	Efficiency Uncertainty
					1 007 00	0.475.04
	15	384.73	5.03E+01	61.32	1.02E-02	8.47E-04
	16	410.28	3.24E+01	34.38	9.69E-03	8.19E-04
	17	463.64	3.20E+01	35.04	8.72E-03	7.65E-04
	18	511.69	1.18E+02	45.21	8.00E-03	7.17E-04
	19	535.95	2.70E+01	30.45	7.68E-03	6.93E-04
М	20	579.46	1.38E+01	12.30	7.18E-03	6.50E-04
m	21	583.44	1.49E+02	30.28	7.14E-03	6.46E-04
M	22	604.72	1.22E+01	16.12	6.92E-03	6.25E-04
m	23	609.63	3.46E+02	41.32	6.87E-03	6.20E-04
M	24	651.87	2.14E+01	23.54	6.48E-03	5.78E-04
m	25	657.08	1.85E+01	21.10	6.43E-03	5.72E-04
,	26	714.75	6.04E+01	38.04	5.98E-03	5.24E-04
	27	727.73	2.91E+01	24.30	5.89E-03	5.14E-04
	28	769.79	4.13E+01	51.85	5.61E-03	4.79E-04
	29	795.96	2.27E+01	21.63	5.45E-03	4.58E-04
	30	911.20	7.92E+01	30.82	4.85E-03	3.72E-04
	31	933.87	3.49E+01	22.89	4.75E-03	3.68E-04
	32	970.18	5.19E+01	33.11	4.60E-03	3.61E-04
m	33	1011.24	1.74E+01	12.57	4.44E-03	3.54E-04
M	34	1115.57	1.56E+01	8.49	4.09E-03	3.34E-04
m	35	1120.65	9.01E+01	26.68	4.08E-03	3.33E-04
M	36	1238.10	2.80E+01	22.88	3.76E-03	3.09E-04
m	37	1248.34	1.51E+01	17.76	3./3E-03	3.07E-04
m	38	1255.45	1.76E+01	20.58	3.71E-03	3.05E-04
10:	39	1378.35	2.31E+01	19.16	3.45E-03	2.82E-04
	40	1433.11	8.00E+00	10.44	3.34E-03	2.73E-04
	41	1460.86	3.55E+02	41.63	3.29E-03	2.69E-04
	42	1508.15	2.17E+01	12.57	3.21E-03	2.62E-04
	43	1589.28	1.70E+01	12.81	3.09E-03	2.50E-04
		1728.57	1.80E+01	11.92	2.90E-03	2.29E-04
	44 45		4.01E+01	19.12	2.86E-03	2.24E-04
	45	1764.55	1.10E+01	11.52	2.77E-03	2.13E-04
	46	1846.61	8.17E+00	9.41	2.52E-03	2.13E-04
	47	2119.62		10.77	2.46E-03	2.13E-04
	48	2204.93	1.75E+01	5.66	2.32E-03	2.13E-04
	49 50	2447.24 2614.27	8.00E+00 4.70E+01	13.71	2.24E-03	2.13E-04

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000 sigma

BACKGROUND SUBTRACT REPORT

Peak Analysis Performed on

: 4/13/2016 8:02:52AM

Env. Background File

: \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035178.CNF

Analysis Report for 1603102-03

	Peak No.	Energy (keV)	Original Area	Orig. Area Uncertainty	Ambient Background	Backgr. Uncert.	Subtracted Area	Subtracted Uncert.
	1	46.79	2.14E+02	64.89	3.04E+01	2.01E+01	1.83E+02	6.79E+01
	2	62.93	1.60E+02	88.70	5.41E+01	5.13E+00	1.06E+02	8.88E+01
M	3	75.10	3.21E+02	78.76			3.21E+02	7.88E+01
m	4	77.58	5.93E+02	86.62		•	5.93E+02	8.66E+01
М	5	87.94	1.72E+02	64.43	3.05E+00	2.15E+00	1.69E+02	6.45E+01
m [·]	6	92.92	2.15E+02	65.60	7.72E+01	4.69E+00	1.38E+02	6.58E+01
,	7	129.32	5.60E+01	55.44	5.56E+00	6.45E+00	5.04E+01	5.58E+01
	8	186.62	1.75E+02	72.10	3.82E+01	5.87E+00	1.36E+02	7.23E+01
	9	209.13	1.05E+02	66.23			1.05E+02	6.62E+01
М	10	239.02	5.56E+02	60.60	1.06E+01	5.71E+00	5.45E+02	6.09E+01
m	11	242.23	1.89E+02	63.81			1.89E+02	6.38E+01
	12	295.59	2.15E+02	64.12			2.15E+02	6.41E+01 4.87E+01
	13	338.65	8.16E+01	48.68		0.000.00	8.16E+01	6.05E+01
	1.4	352.33	4.78E+02	60.52	0.00E+00	0.00E+00	4.78E+02 5.03E+01	6.03E+01
	15	384.73	5.03E+01	61.32			3.24E+01	3.44E+01
	16	410.28	3.24E+01	34.38			3.20E+01	3.50E+01
	17	463.64	3.20E+01	35.04	r 050 01	4.92E+00	5.80E+01	4.55E+01
	18	511.69	1.18E+02	45.21	5.95E+01	4.925+00	2.70E+01	3.04E+01
	19	535.95	2.70E+01	30.45			1.38E+01	1.23E+01
M	20	579.46	1.38E+01	12.30	5.06E+00	2.98E+00	1.44E+02	3.04E+01
m	21	583.44	1.49E+02	30.28	3.005+00	2.901100	1.22E+01	1.61E+01
М	22	604.72	1.22E+01	16.12 41.32	2.01E+00	3.84E+00	3.44E+02	4.15E+01
m	23	609.63	3.46E+02	23.54	2.(111.00	5.011.00	2.14E+01	2.35E+01
M	24	651.87	2.14E+01 1.35E+01	21.10			1.85E+01	2.11E+01
m	25	657.08 714.75	6.043+01	38.04			6.04E+01	3.80E+01
	26 27	727.73	2.91E+01	24.30			2.91E+01	2.43E+01
	28	769.79	4.13E+01	51.85			4.13E+01	5.18E+01
	29	795.96	2.27E+01	21.63			2,27E+01	2.16E+01
	30	911.20	7.92E+01	30.82	2.99E+00	2.93E+00	7.62E+01	3.10E+01
	31	933.87	3.49E+01	22.89			3.49E+01	2.29E+01
	32	970.18	5.19E+01	33.11			5.19E+01	3.31E+01
m	33	1011.24	1.74E+01	12.57			1.74E+01	1.26E+01
M	34	1115.57	1.56E+01	8.49			1.56E+01	8.49E+00
m	35	1120.65	9.01E+01	26.68			9.01E+01	2.67E+01
M		1238.10	2.80E+01	22.88			2.80E+01	2.29E+01
m		1248.34	1.51E+01	17.76		,	1.51E+01	1.78E+01
m		1255.45	1.76E+01	20.58			1.76E+01	2.06E+01
2	39	1378.35	2.31E+01	19.16			2.31E+01	1.92E+01
	40	1433.11	8.00E+00	10.44			8.00E+00	1.04E+01
	41	1460.86	3.55E+02	41.63			3.55E+02	4.16E+01
	42	1508.15	2.17E+01	12.57			2.17E+01	1.26E+01
	43	1589.28	1.70E+01	12.81			1.70E+01	1.28E+01
	44	1728.57	1.80E+01	11.92			1.80E+01	1.19E+01
	45	1764.55	4.01E+01	19.12			4.01E+01	1.91E+01 1.15E+01
	46	1846.61	1.10E+01	11.52			1.10E+01	9.41E+00
	47	2119.62	8.17E+00	9.41			8.17E+00	1.08E+01
	48	2204.93	1.75E+91	10.77			1.75E+01 8.00E+00	5.66E+00
	49	2447.24	8.00E+00	5.66			4.70E+01	1.37E+01
	50	2614.27	4.70E+01	13.71			4.705401	1.0/101

1603102-03

SEDIMENT 2016-03-16A

M = First peak in a multiplet regioe

m = Other peak in a multiplet region:

F = Fitted singlet

Errors quoted at 2.000sigma

AREA CORRECT!ON REPORT REFERENCE PEAK / BKG. SUBTRACT

Peak Analysis Performed on

: 4/13/2016 8:02:52AM

Ref. Peak Energy

: 0.00

Reference Date

Uncertainty

: 0.00

Peak Ratio Background File : 0.00 : \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035178.CNF

Corrected Area is: Original * Peak Ratio - Background

	Peak No.	Energy (keV)	Original Area	Orig. Area Uncertainty	Ambient Background	Backgr. Uncert.	Corrected Area	Corrected Uncert.
	1.	46.79	2.14C±02	64.89	3.04E+01	2.01E+01	1.83E+02	6.79E+01
	2	62.93	1.60E÷02	88.70	3.41E+01	5.13E+00	1.06E+02	8.88E+01
М	3	75.10	3.21E+02	78.76			3.21E+02	7.88E+01
m	4	77.58	5.93E+02	86.62			5.93E+02	8.66E+01
М	5	87.94	1.72E+02	64.43	3.05E+00	2.15E+00	1.69E+02	6.45E+01
m	6	92.92	2.15E+02	65.60	7.72E+01	4.69E+00	1.38E+02	6.58E+01
111	7	129.32	5.60E+01	55.44	5.56E+00	6.45E+00	5.04E+01	5.58E+01
	8	186.62	1.75E+02	72.10	3.82E+01	5.87E+00	1.36E+02	7.23E+01
	9	209.13	1.05E+02	66.23			1.05E+02	6.62E+01
М	10	239.02	5.56E+02	60.60	1.06E+01	5.71E+00	5.45E+02	6.09E+01
m	11	242.23	1.89E+02	63.81			1.89E+02	6.38E+01
	12	295.59	2.15E+02	64.12	•		2.15E+02	6.41E+01
	13	338.65	8.16E+01	48.68			8.16E+01	4.87E+01
	14	352.33	4.78E+02	60.52	0.00E+00	0.00E+00	4.78E+02	6.05E+01
	15	384.73	5.03E+01	61.32			5.03E+01	6.13E+01
	16	410.28	3.24E+01	34.38			3.24E+01	3.44E+01
	17	463.64	3.20E+01	35.04			3.20E+01	3.50E+01
	18	511.69	1.18E+02	45.21	5.95E+01	4.92E+00	5.80E+01	4.55E+01
	19	535.95	2.70E+01	30.45			2.70E+01	3.04E+01
Μ	20	579.46	1.38E+01	12.30			1.38E+01	1.23E+01
m	21	583.44	1.49E+02	30.28	5.06E+00	2.98E+00	1.44E+02	3.04E+01
Μ	22	604.72	1.22E+01	16.12		1	1.22E+01	1.61E+01
m	23	609.63	3.46E+02	41.32	2.01E+00	3.84E+00	3.44E+02	4.15E+01
М	24	651,87	2.14E+01	23.54	•		2.14E+01	2.35E+01
m	25	657.08	1.857+01	21.10			1.85E+01	2.11E+01
	26	714.75	6.04E+01	38.04			6.04E+01	3.80E+01
	27	727.73	2.91E+01	24.30			2.91E+01	2.43E+01
	28	769.79	4.13E+01	51.85			4.13E+01	5.18E+01
	29	795.96	2.27E+01	21.63			2.27E+01	2.16E+01
	30	911.20	7.92E+01	30.82	2.99E+00	2.93E+00	7.62E+01	3.10E+01
	31	933.87	3.49E+01	22,89			3.49E+01	2.29E+01
	32	970.18	5.19E+01	33.11			5.19E+01	3.31E+01

1603102-03

SEDIMENT 2016-03-16A

	Peak No.	Energy (keV)	Original Area	Orig. Area Uncertainty	Ambient Background	Backgr. Uncert.	Corrected Area	Corrected Uncert.
 m	33	1011.24	1.74E+01	12.57			1.74E+01	1.26E+01
M		1115.57	1.56E+01	8.49			1.56E+01	8.49E+00
m		1120.65	9.01E+01	26.68			9.01E+01	2.67E+01
M		1238.10	2.80E+01	22.88			2.80E+01	2.29E+01
m		1248.34	1.51E+01	17.76	•		1.51E+01	1.78E+01
m		1255.45	1.76E+01	20.58			1.76E+01	2.06E+01
111		1378.35	2.31E+01	19.16			2.31E+01	1.92E+01
		1433.11	8.00E+00	10.44			8.00E+00	1.04E+01
		1460.86	3.55E+02	41.63		•	3.55E+02	4.16E+01
		1508.15	2.17E+01	12.57			2.17E+01	1.26E+01
		1589.28	1.70E+01	12.81			1.70E+01	1.28E+01
	44		1.80E+01	11.92			1.80E+01	1.19E+01
		1764.55	4.01E+01	19.12			4.01E+01	1.91E+01
	46		1.10E+01	11.52			1.10E+01	1.15É+01
	47		8.17E+00	9.41			8.17E+00	9.41E+00
	48		1.75E+01	10.77			1.75E+01	1.08E+01
	49		8.00E+00	5.66			8.00E+00	5.66E+00
	50		4.70E+01	13.71			4.70E+01	1.37E+01

M = First peak in a multiplet region

rn = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

NUCLIDE IDENTIFICATION REPORT

Nuclide Library Used

: \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB

IDENTIFIED NUCLIDES

Nuclide Name	ld Confidence	Energy (keV)		Yield(%)	Activity (pCi/grams)	Activity Uncertainty
K-40	1.000	1460.81 *	ŧ.	10.67	1.69E+01	2.45E+00
ZN-65	1.000	1115.52 *	k	50.75	1.36E-01	7.50E-02
GA-67	0.424	93.31 *	k	35.70	9.65E+01	3.68E+02
GA-07	0 1 1 1 1	208.95 *	ĸ	2.24	1.69E+03	6.22E+03
		300.22		16.00		
CD-109	0.999	88.03 *	*	3.72	3.25E+00	1.30E+00
SN-126	0.978		*	37.00	3.14E-01	1.24E-01
CS-134	0.748	563.23		8.38		
C2-134	01110	569,32		15.43		
		604.70	*	97.60	3.11E-02	4.12E-02
		795.84	*	85.40	8.39E-02	8.03E-02
		801.93		8.73		
TL-208	0.869		*	30.22	1.12E+00	2.57E-01

1603102-03

SEDIMENT 2016-03-16A

Nuclide Name	Id Confidence	Energy (keV)	• .	Yield(%)	Activity (pCi/grams)	Activity Uncertainty
TL-208	0.869	860.37		4.48		
111 200	0.000	2614.66	*	35.85	9.82E-01	3.01E-01
PB-210	0.986	46.50	×	4.25	4.78E+00	1.84E+00
BI-212	0.731	727.17	*	11.80	7.03E-01	5.90E-01
D1 212		1620.62		2.75		
PB-212	0.873	238.63	*	44.60	1.35E+00	1.83E-01
ID ZIC		300.09		3.41		
BI-214	0.983	609.31	*	46.30	1.82E+00	2.73E-01
D1 21.		1120.29	*	15.10	2.46E+00	7.54E-01
		1764.49	*	15.80	1.49E+00	7.20E-01
•		2204,22	.★	4.98	2.39E+00	1.49E+00
PB-214	0.974	295.21	*	19.19	1.47E+00	4.52E-01
ED ST4		351.92	*	37.19	1.95E+00	2.93E-01
RA-226	0.973	186.21	*	3.28	3.82E+00	7.29E+00
AC-228	0.574	338.32	*	11.40	1.05E+00	6.32E-01
AC 220	0,01,1	911.07	*	27.70	9.51E-01	3.93E-01
		969.11		16.60		
TH-234	0.979	63.29	*	3.80	2.28E+00	1.83E+00
AM-243	0.971	74.67	*	66.00	3.45E-01	9.00E-02

^{* =} Energy line found in the spectrum.

Nuclide confidence index threshold = 0.30

Errors quoted at 2.000sigma

UNIDENTIFIED PEAKS

Peak Locate Performed on

: 4/13/2016 8:02:52AM

Peak Locate From Channel
Peak Locate To Channel

: 1 : 4096

Pe	ak No.	Energy (keV)	Peak Size (CPS)	Peak CPS (%) Uncertainty	Peak Type	Tolerance Nuclide
m	4	77.58	1.64734E-01	7.30	Tol.	TI-44
	7	129.32	1.40108E-02	55.33		
m	11	242.23	5.24466E-02	16.90		
111	15	384.73	1,39850E-02	60.90	Sum	
	16	410.28	8.99716E-03	53.07	Tol.	HO-166M
	17	463.64	8.88211E-03	54.80		
	18	511.69	1.61234E-02	39.18		
	19	535.95	7.50000E-03	56.38		
М	20	579.46	3.83071E-03	44.59		
M	24	651.87	5.93315E-03	55.11	Sum	

^{- =} Manually added nuclide.

^{? =} Manually edited nuclide. Energy Tolerance: 1.000 keV

1603102-03

SEDIMENT 2016-03-16A

Pe	ak No.	Energy (keV) Peak Size (CPS)		Peak CPS (%) Uncertainty	₽eak Type	Tolerance Nuclide	
m	25	657.08	5.15008E-03	56.89	Sum		
	26	714.75	1.67905E-02	31.47			
	28	769.79	1.14701E-02	62.78	Sum		
	31	933.87	9.68456E-03	32.83			
	32	970.18	1.44283E-02	31.87			
m	33	1011.24	4.84625E-03	36.02			
М	36	1238.10	7.78546E-03	40.82			
m	37	1248.34	4.18343E-03	58.97			
m	38	1255.45	4.88650E-03	58.49			
	39	1378.35	6.41382E-03	41.50			
	40	1433.11	2.2222E-03	65.25			
	42	1508.15	6.02881E-03	28.96	Sum		
	43	1589.28	4.72222E-03	37.67			
	44	1728.57	5.00000E-03	33.10			
	46	1846.61	3.05556E-03	52.37			
	47	2119.62	2.26852E-03	57.60			
	49	2447.24	2.2222E-03	35.36			

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

NUCLIDE IDENTIFICATION REPORT

Nuclide Library Used

: \\OR-GAMMA*\ApexRoot\Countroom\Library\TMA2.NLB

IDENTIFIED NUCLIDES

Nuclide Name	ld Confidence	Energy (keV)		Yield(%)	Activity (pCi/grams)	Activity Uncertainty	
K-40	1.00	1460.81	*	10.67	1.69E+01	2.45E+00	
ZN-65	1.00	1115.52	*	50.75	1.36E-01	7.50E-02	
GA-67	0.42	93.31	*	35.70	9.65E+01	3.68E+02	
UA UI	V.12	208.95	*	2,24	1.69E+03	6.22E+03	
		300.22		16.00			
CD-109	0.99	88.03	*	3.72	3.25E+00	1.30E+00	
SN-126	0.97	87.57	*	37.00	3.14E-01	1.24E-01	
CS-134	0.74	563.23		8.38			
CD 134	0.71	569.32		15.43			
		604.70	*	97.60	3.11E-02	4.12E-02	
		795.84	*	85.40	8.39E-02	8.03E-02	

1603102-03

SEDIMENT 2016-03-16A

Nuclide Name	ld Confidence	Energy (keV)		Yield(%)	Activity (pCi/grams)	Activity Uncertainty	
CS-134	0.74	801.93		8.73	·.		•
TL-208	0.86	583.14	*	30.22 4.48	1.12E+00	2.57E-01	
		860.37 2614.66	*	35.85	9.82E-01	3.01E-01	
PB-210	0.98	46.50	*	4.25	4.78E+00	1.84E+00	
BI-212	0.73	727.17	*	11.80	7.03E-01	5.90E-01	
		1620.62		2.75		4 005 01	
PB-212	0.87	238.63 300.09	*	44.60 3.41	1.35E+00	1.83E-01	
BI-214	0.98	609.31	*	46.30	1.82E+00	2.73E-01	
D1 21.		1120.29	*	15.10	2.46E+00	7.54E-01	
		1764.49	*	15.80	1.49E+00	7.20E-01	
		2204.22	*	4.98	2.39E+00	1.49E+00	
PB-214	0.97	295.21	*	19.19	1.47E+00	4.52E-01	
		351.92	*	37.19	1.95E+00	2.93E-01	
RA-226	0.97	186.21	*	3.28	3.82E+00	7.29E+00	
AC-228	0.57	338.32	*	11.40	1.05E+00	6.32E-01	
110 220		911.07	*	27.70	9.51E-01	3.93E-01	
		969.11		16.60			
TH-234	0.97	63.29	*	3.80	2.18E+00	1.83E+00	
AM-243	0.97	74.67	*	66.00	3.45E-01	9.00E-02	

^{* =} Energy line found in the spectrum.

Energy Tolerance: 1.000 keV

Nuclide confidence index threshold = 0.30

Errors quoted at 2.000sigma

INTERFERENCE CORRECTED REPORT

	Nuclide Name	Nuclide Id Confidence	Wt mean Activity (pCi/grams)	Wt mean Activity Uncertainty	Comments
?	K-40 ZN-65 GA-67 CD-109 SN-126	1.000 1.000 0.424 0.999 0.978	1.69E+01 1.36E-01 1.15E+02 3.25E+00 3.14E-01	2.45E+00 7.50E-02 4.33E+02 1.30E+00 1.24E-01	
•	CS-134	0.748	4.21E-02	3.67E-02	

^{- =} Manually added nuclide.

^{? =} Manually edited nuclide.

^{@ =} Energy line not used for Weighted Mean Activity

1603102-03

SEDIMENT 2016-03-16A

Nuclide Name	Nuclide Id Confidence	Wt mean Activity (pCi/grams)	Wt mean Activity Uncertainty	Comments
TL-208	0.869	1.06E+00	1.96E-01	
PB-210	0.986	4.78E+00	1.84E+00	
BI-212	0.731	7.03E-01	5.90E-01	
PB-212	0.873	1.35E+00	1.83E-01	
BI-214	0.983	1.86E+00	2.39E-01	
PB-214	0.974	1.81E+00	2.46E-01	•
RA-226	0.973	3.82E+00	7.29E+00	
AC-228	. 0.574	9.79E-01	3.34E-01	
TH-234	0.979	2.18E+00	1.83E+00	
AM-243	0.971	3.45E-01	9.00E-02	

^{? =} nuclide is part of an undetermined solution

Errors quoted at 2.000sigma

X = nuclide rejected by the interference analysis

^{@ =} nuclide contains energy lines not used in Weighted Mean Activity

Analysis Report for 1603102-03

SEDIMENT 2016-03-16A

UNIDENTIFIED PEAKS

Peak Locate Performed on

: 4/13/2016 8:02:52AM

Peak Locate From Channel

: 1

: 4096 Peak Locate To Channel

Pe	ak No.	Energy (keV)	Peak Size (CPS)	Peak CPS (%) Uncertainty	Peak Type	Tolerance Nuclide		
m	4	77.58	1.64734E-01	7.30	Tol.	TI-44		
	7	129.32	1.40108E-02	55.33				
m	11	242.23	5.24466E-02	16.90				
	15	384.73	1.39850E-02	60.90 (Sum			
	16	410.28	8.99716E-03	53.07	Tol.	HO-166M		
	17	463.64	8.88211E-03	54.80				
	18	511.69	1.61234E-02	39.18				
	19	535.95	7.50000E-03	56.38				
М	20	579.46	3.83071E-03	44.59				
M	24	651.37	5.93315E-03	55.11	Sam			
rn	25	657.08	5.15008E-03	56.89	Sum			
	26	714.75	1.67905E-02	31.47		:		
	28	769.79	1.14701E-02	62.78	Sum	.,		
	31	933.87	9.63456E-03	32.83				
	32	970.18	1.44283E-02	31.87				
m	33	1011.24	4.84625E-03	36.02				
M	36	1238.10	7.78546E-03	40.82				
m	37	1248.34	4.18343E-03	58 .9 7				
m	38	1255.45	4.88650E-03	58.49				
	39	1378.35	6.41382E-03	41.50				
	40	1433.11	2.2222E-03	65.25				
	42	1508.15	6.02881E-03	28.96	Sum			
	43	1589.28	4.72222E-03	37.67				
	44	1728.57	5.00000E-03	33.10				
	46	1846.61	3.05556E-03	52.37				
	47	2119.62	2.26852E-03	57.60				
	49	2447.24	2.2222E-03	35.36				

M = First peak in a multiplet region

m = Other peak in a multiplet reမွှင့်ရ

F = Fitted singlet

Errors quoted at 2.000sigma

1603102-03

SEDIMENT 2016-03-16A

NUCLIDE MDA REPORT

	Nuclide Name	Energy (keV)		Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)
	BE-7	477.59		10.42	5.18E-02	1.29E+00	1.29E+00
	NA-22	1274.54		99.94	-8.24E-02	1.32E-01	1.32E-01
	NA-24	1368.53		99.99	8.91E+11	1.64E+12	2.50E+12
	1111 20 3	2754.09		99.86	8.84E+10		1.64E+12
	AL-26	1808.65		99.76	4.99E-04	7.19E-02	7.19E-02
	K-40	1460.81	*	10.67	1.69E+01	1.52E+00	1.52E+00
	@ AR-41	1293.64		99.16	1.00E+26	1.00E+26	1.00E+26
	TI-44	67,88		94.40	1.09E-02	8.04E-02	8.04E-02
	11 11	78.34		96.00	2.57E-01		1.09E-01
	SC-46	889.25		99.98	-3.62E-02	1.43E-01	1.43E-01
		1120.51		99.99	3.61E-01		2.65E-01
	V-48	983.52		99.98	-8.48E-02	3.81E-01	3.81E-01
		1312.10		97.50	2.38E-01		4.84E-01
	CR-51	320.08		9.83	7.71E-01	1.74E+00	1.74E+00
	MN-54	834.83		99.97	-7.22E-03	1.23E-01	1.23E-01
	CO-56	846.75		99.96	1.72E-03	1.15E-01	1.15E-01
		1037.75		14.03	-2.90E-01		9.90E-01
		1238.25		67.00	2.95E-01 -8.80E-01	,	3.22E-01 6.83E-01
		1771.40 2598.48		15.51 16.90	2.29E-01		7.39E-01
	CO-57	122.06		85.51	-9.29E-03	6.66E-02	6.66E-02
	00 07	136.48		10.60	3.86E-01		6.06E-01
	CO-58	810.76		99.40	5.69E-04	1.15E-01	1.15E-01
	FE-59	1099.22		56.50	-2.85E-03	3.06E-01	3.06E-01
	-	1291.56		43.20	-1.45E-01		4.35E-01
	CO-60	1173.22		100.00	9.13E-03	1.31E-01	1.31E-01
		1332.49		100.00	7.85E-02		1.54E-01
	ZN-65	1115.52	*	50.75	1.36E-01	3.79E-01	3.79E-01
	GA-67	93.31	*	35.70	9.65E+01	1.53E+02	1.53E+02
		208.95	*	2.24	1.69E+03		1.72E+03 2.14E+02
	65 7F	300.22		16.00 16.70	1.05E+02 -1.92E-01	1.18E-01	3.63E-01
	SE-75	121.11		59.20	4.54E-02		1.18E-01
		136.00 264.65		59.80	-1.33E-01		1.46E-01
		279.53		25.20	-5.80E-02		3.54E-01
		400.65		11.40	-6.68E-01		7.92E-01
	RB-82	776.52		13.00	3.00E-01		
-	RB-83	520.41		46.00	1.21E-02		
		529.64		30.30	-5.89E-02		3.29E-01 6.67E-01
		552.65		16.40	2.46E-02		0.0/E-UI

1603102-03

	Nuclide Name	Energy (keV)		Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
+	KR-85	513.99		0.43	2.71E+01	2.81E+01	2.81E+01	
+	SR-85	513.99		99.27	1.59E-01	1.65E-01	1.65E-01	
+	Y-88	898.02		93.40	-2.90E-02	1.09E-01	1.44E-01	
		1836.01		99.38	3.29E-02		1.09E-01	
+	NB-93M	16.57		9.43	-1.25E+01	9.75E+01	9.75E+01	
+	NB-94	702.63		100.00	6.56E-02	8.48E-02	1.07E-01	
		871.10		100.00	-7.07E-02		8.48E-02	
+	NB-95	765.79		99.81	1.30E-01	2.12E-01	2.12E-01	
+	NB-95M	235.69		25.00	3.32E+00	1.01E+02	1.01E+02	
+	ZR-95	724.18		43.70	8.85E-02	2.39E-01	3.34E-01	
		756.72		55.30	-6.48E-02		2.39E-01	
+	MO-99	181.06		6.20	4.45E+02	7.69E+02	1.13E+03	
		739.58		12.80	-1.82E+02		7.69E+02	
	•	778.06		4.50	-1.47E+03		2.29E+03	
+	RU-103	497.08		89.00	-5.82E-02	1.47E-01	1.47E-01	
+	RU-106	621.84		.9.80	-3.93E-01	9.24E-01	9.24E-01	
+	AG-108M	433.93		89.90	-3.94E-02	9.42E-02	9.42E-02	
		614.37		90.40	-6.06E-01		1.16E-01	
	am 100	722.95	J.	90.50	3.16E-02	4.20E+00	1.11E-01 4.20E+00	
+	CD-109	88.03	*	3.72	3.25E+00	1.20E-01	1.20E-01	
+	AG-110M	657.75		93.14	-1.33E-01 2.10E-01	1.206-01	9.12E-01	•
		677.61 706.67		10.53 16.46	-7.89E-02		6.49E-01	
		763.93		21.98	4.74E-02		5.25E-01	
		884.67		71.63	6.51E-02		1.69E-01	
		1384.27		23.94	-4.72E-02		5.07E-01	
+	CD-113M	263.70		0.02	-3.07E+01	3.30E+02	3.30E+02	
+	SN-113	255.12		1.93	-3.48E-01	1.48E-01	4.86E+00	
		391.69		64.90	-1.58E-02		1.48E-01	
+	TE123M	159.00		84.10	-1.38E-02	8.85E-02	8.85E-02	
+	SB-124	602.71		97.87	-1.98E-02	1.34E-01	1.34E-01	
		645.85		7.26	7.30E-02		1.68E+00	
		722.78		11.10	3.55E-01 1.60E-02		1.25E+00 1.92E-01	
	т 105	1691.02 35.49		49.00 6.49	2.70E+00	3.54E+00	3.54E+00	
+	I-125 SB-125	176.33		6.89	-4.43E-01	2.97E-01		
+	2B-122	427.89		29.33	7.16E-02	2.576 01	2.97E-01	
		427.09		10.35	5.19E-01		9.84E-01	
		600.56		17.80	1.15E-01		5.63E-01	
		635.90		11.32	-9.92E-02		7.82E-01	
+	SB-126	414.70		83.30	4.36E-02	4.66E-01		•
		666.33		99.60	1.52E-01		5.27E-01	
		695.00		99.60	3.62E-01		4.66E-01	
	av 106	720.50	4	53.80	-1.18E-01	4.05E-01	9.29E-01 4.05E-01	
+	SN-126	87.57	*	37.00	3.14E-01	4.05E-01 3.79E+01		
+	SB-127	473.00		25.00	-2.95E+01	3./9E+U1	3.79E+01	
		685.20		35.70	5.16E+00 3.87E+01		1,06E+02	
		783.80		14.70	3.0/ETVI		1,000102	

Analysis Report for 1603102-03

	Nuclide Name	Energy (keV)		Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)		_
+	1-129	29.78		57.00	-1.61E-01	4.92E-01	4,92E-01		
'	1 125	33.60		13.20	2.70E 01		1.45E+00		
		39.58		7.52	7-19E-01		1.67E+00		
+	I-131	284.30		6.05	4.38E-01	1.10E+00	1.39E+01		
		364.48		81.20	-1.40E-01		1.10E+00		
		636.97		7.26	4.58E+00		1.36E+01		
		722.89		1.80	1.74E+01	0.000.01	6.13E+01		
+	TE-132	49.72		13.10	2.79E+01	3.20E+01	2.58E+02		
•		228.16		88.00	2.73E+00	0 015 01	3.20E+01		
+	BA-133	81.00		33.00	-9.57E-01	2.21E-01	2.21E-01 4.86E-01		
		302.84		17.80	1.24E-01		4.86E-01 2.21E-01		
	- 100	356.01		60.00	1.56E-J2 -7.16E+07	4.00E+08	4.00E+08		
+	I-133	529.87		86.30		7.49E+00	7.49E+00		
÷	XE-133	81.00		38.00	-3.24E+01		1.07E+00		
+	CS-134	563.23		8.38	-2.51E-01	1.28E-01			
		569.32	_	15.43	-1.89E-01		5.74E-01 1.75E-01		
		604.70	*	97.60 85.40	3.11E-02 8.39E-02		1.75E-01		
		795.84 801.93	^	8.73	7.74E-02		1.09E+00		
+	CS-135	268.24		16.00	9.46E-02	5.15E-01	5.15E-01		
+	@ I-135	1131.51		22.50	1.00E+26	1.00E+26	1.00E+26		
T	6 1 122	1260.41		28.60	1.00E+26		1.00E+26		
	0	1678.03		9.54	1.00E+26		1.00E+26		
+	CS-136	153.22		7.46	-2.04E-01	4.18E-01	3.66E+00	***	
•	00 100	163.89		4.61	2.87E-01		5.76E+00		
		176.55		13.56	-8.87E-02		2.02E+00		
		273.65		12.66	4.51E-01		2.84E+00		
		340.57		48.50	-4.40E-02		8.98E-01		
		818.50		99.70	5.61E-02		4.18E-01		
		1048.07		79.60	-2.95E-01 -2.59E+00		5.94E-01 3.24E+00		
	ag 137	1235.34		19.70 85.12	4.11E-03	1.34E-01	1.34E-01		
+	CS-137	661.65			1.47E-01	1.75E-01	3.14E-01		
+	LA-138	788.74		34.00	-3.12E-01	1.755 01	1.75E-01		
	OF 130	1435.80 165.85		66.00 80.35	-1.64E-02	8.81E-02	8.81E-02		
+	CE-139			6.70	-1.89E+00	1.67E+00	4.05E+00		
+	BA-140	162.64		4.50	-2.54E+00	1.071.00	7.83E+00		
		304.84 423.70		3.20	-2.00E+00		1.14E+01		
		437.55		2.00	6.85E+00		1.96E+01		
		537.32		25.00	7,03E-01		1.67E+00		
+	LA-140	328.77		20.50	8.33E-01	4.66E-01	1.97E+00		
		487.03		45,50	-2.33E-01		8.69E-01		
		815.85		23.50	-8.09E-02		1.75E+00		
		1596.49		95.49			4.66E-01		
+	CE-141	145.44		48.40	5.44E-02				
+	CE-143	57.36		11.80					
		293.26		42.00	-3.96E+04		3.44E+05		
		664.55		5,20			2.79E+06 5.76E-01		
+	CE-144	133.54		10.80	-6.03E-02	J. / OE-UI	5,,00 01		

1603102-03

	Nuclide Name	Energy (keV)	Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
<u> </u>			·				
+	PM-144	476.78	42.00	-7.30E-02	8.49E-02	2.28E-01	
		618.01	98.60	-1.72E-02		8.49E-02	
		696.49	99.49	6.82E-03		9.96E-02	
,+	PM-145	36.85	21.70	-1.23E-01	3.62E-01	6.82E-01	
		37.36	39.70	1.34E-02		3.62E-01	
		42.30	15.10	-3.21E-02		7.13E-01	
		72.40	2.31	-6.14E+00	~ ·	3.86E+00	
+	PM-146	453.90	39.94	1.28E-02	2.21E-01	2.21E-01	
		735.90	14.01	2.07E-02	* :	6.35E-01	
		747.13	13.10	-2.41E - 01	•	7.54E-01	
+	ND-147	91.11	28.90	-1.07E+00	1.60E+00	1.60E+00	
		531.02	13.10	1.07E-01		3.63E+00	
+	PM-149	285.90	3.10	5.10E+03	1.48E+04	1.48E+04	
+	EU-152	121.78	20.50	-3.62E-02	2,59E-01	2.59E-01	
•	10 102	244.69	5.40	3.23E-01		1.86E+00	
		344.27	19.13	-4.40E-02		3.95E-01	
		778.89	9.20	-2.44E-01		1.02E+00	
		964.01	10.40	-9.50E-02		1.11E+00	
		1085.78	7.22	7.45E-01		1.64E+00	
		1112.02	9.60	-3.79E-01	٠	1,29E+00	
		1407.95	14.94	2.53E-01		8.64E-01	
+	GD-153	97.43	31.30	-4.66E - 03	2.05E-01	2.05E-01	5.
		103.18	22.20	-1.39E-01		2.70E-01	
+	EU-154	123.07	40.50	9.00E-03	1.34E-01	1.34E-01	
		723.30	19.70	1.46E-01		5.15E-01	
		873.19	11.50	4.62E-01		8.82E-01	
		996.32	10.30	-6.37E-02		8.75E-01	
		1004.76	17.90	-1.02E-01		6.30E-01	
		1274.45	35.50	-2.29E-01		3.65E-01	
+	EU-155	86.50	30.90	1.96E-01	2.63E-01	2.63E-01	
		105.30	20.70	3.55E-02		2.80E-01	
+	EU-156	811.77	10.40	-5.63E-01	2.82E+00	2.82E+00	
		1153.47	7.20	2.39E+00		6.67E+00	
		1230.71	8.90	1.49E+00		5.88E+00	
+	HO-166M	184.41	72.60	1.82E-01	1.13E-01	1.13E-01	
		280.45	29.60	1.06E-01		2.65E-01	
		410.94	11.10	2.58E-01		8.54E-01	
		711.69	54.10	1.46E-01		2.18E-01	
+	TM-171	66.72	0.14	3.55E+01	5.72E+01	5.72E+01	
+	HF-172	81.75	4.52	-6.86E+00	5.22E-01		
		125.81	11.30	1.44E-01		5.22E-01	
+	LU-172	181.53	20.60	1.42E+00	3.06E+00		
		810.06	16.63	-2.97E+00		9.34E+00	
		912.12	15.25	3.17E+01	:		
		1093.66	62.50	-7.08E-01		3.06E+00	
+	LU-173	100.72	5.24	-1.78E-02	4.27E-01		
	•	272.11	21.20	4.03E-01		4.27E-01	
+	HF-175	343.40	84.00	-6.67E-03	1.20E-01		
+	LU-176	88, 34	13.30	3.00E-02	7.68E-02	6.15E-01	

or 1603102-03

	Nuclide Name	Energy (keV)		Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
	LU-176	201.83		85.00	-1.94E-03	7.68E-02	8.99E-02	
	TO-1/0	306.78		94.00	-4.30E-02	,,,,,,	7.68E-02	
+	TA-182	67.75		41.20	2.96E-02	2.18E-01	2.18E-01	
		1121.30		34.90	1.14E+J0		7.19E-01	
		1189.05		16.23	1.71E-01		8.47E-01	
		1221.41		26.98	7.96E-02		5.86E-01 1.53E+00	
	TD 100	1231.02		11.44 29.68	7.95E-01 -1.22E-02	2.26E-01	3.13E-01	
+	IR-192	308.46 468.07		48.10	-2.61E-02	2.202 02	2.26E-01	
+	HG-203	279.19		77.30	-3.16E-02	1.51E-01	1.51E-01	
+	BI-207	569.67		97.72	3.88E-02	9.42E-02	9.42E-02	
1	DI 201	1063.62		74.90	4.30E-02		1.53E-01	
+	TL-208	583.14	*	30,22	1.12E+00	5.65E-02	3.79E-01	
	<u>-</u>	860.37		4.48	1.05E+00		2.49E+00	
		2614.66	*	35.85	9.82E-01		5.65E-02	
+	BI-210M	262.00		45.00	4.45E-02	1.76E-01	1.76E-01	
		300.00		23.00	2.00E-01	0.745100	4.10E-01 2.74E+00	
+	PB-210	46.50	*	4.25	4.78E+00	2.74E+00	2.74E+00 2.97E+00	
+	PB-211	404.84		2.90	1.18E+00	2.97E+00	4.07E+00	
	040	831.96	*	2.90	-3.64E-01 7.03E-01	9.30E-01	9.30E-01	
+	BI-212	727,17	^	11.80 2.75	1.00E+00	9.500 01	4.03E+00	
	PB-212	1620.62 238.33	*	44.60	1.35E+00	3.11E-01		
٦٠	PD-212	300.09		3.41	1,35E+00		2,76E+00	\$
+	BI-214	609.31	*	46.30	1.82E+00	3.73E-01	3.73E-01	
,		1120.29	*	15.10	2,46E+00		1.26E+00	
		1764.49	*	15.80	1.49E+00		9.77E-01	
		2204.22	*	4.98	2.39E+00	0 00# 01	1.90E+00 6.58E-01	
+	PB-214	295.21	*	19.19	1.47E+00	2.92E-01	2.92E-01	
	010	351.92	*	37.19 6.50	1.95E+00 -1.15E-01	1.23E+00	1.23E+00	
+	RN-219	401.80		3.88	-4.10E-01	2.21E+00	2.21E+00	
+	RA-223	323.87			1.88E+01	3.94E+00	3.94E+00	
+	RA-224	240.98		3.95 31.00	6.24E-01	1.45E+00	1.45E+00	
+	RA-225	40.00	*	3.28	3.82E+00	3.23E+00	3.23E+00	
+	RA-226	186.21		8.40	1.18E-01		1,09E+00	
+	TH-227	50.10 236.00		11.50	3.51E-02	1.002.00	1.06E+00	
		256.20		6.30	-8.88E-02		26E+00	
+	AC-228	338.32	*	11.40	1.05E+00		9.92E-01	
		911.07	*	27.70	9.51E-01		5.59E-01	
		969.11		16.60	7.67E-01		9.61E-01	
+	TH-230	48.44		16.90	9.84E-02			
		62.85		4.60	2.31E+00		1.86E+00 2.05E+01	
	Dn 001	67.67		0.37 1.60				
÷	PA-231	283.67		2.30			3.74E+00	
+	TH-231	302.6, 25.64		14.70				
ľ	111 201	84.21		6.40			1.12E+00	
		~		- • • •				

1603102-03

SEDIMENT 2016-03-16A

	Nuclide Name	Energy (ke\)		Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)
+	PA-233	311.98		38.60	-8.05E-02	3.79E-01	3.79E-01
+	PA-234	131.20		20.40	8.89E-02	3.00E-01	3.00E-01
•	IN-234	733.99 946.00		8.80 12.00	1.96E-01 -2.97E-02		1.01E+00 8.87E-01
+	PA-234M	1001.03		0.92	4.56E+00	1.13E+01	1.13E+01
+	TH-234	63.29	*	3.80	2.18E+00	2.98E+00	2.98E+00
+	U-235	143.76		10.50	3.66E-01	5.89E-01	5.89E-01
		163.35 205.31		4.70 4.70	6.51E-02 1.59E-01		1.31E+00 1.71E+00
+	NP-237	86.50		12.60	4.75E-01	6.38E-01	6.38E-01
+	NP-239	106.10 228.18 277.60		22.70 10.70 14.10	1.58E+02 2.16E+02 2.73E+02	9.00E+02	9.00E+02 2.53E+03 1.94E+03
+	AM-241	59.54		35.90	-4.20E-02	2.22E-01	2.22E-01
+	AM-243	74.67	*	66.00	3.45E-01	2.01E-01	2.01E-01
+	CM-243	209.75 228 14 277.50		3.29 10.60 14.00	1.96E+00 6.22E-02 7.83E-02	5.56E-01	2.64E+00 7.28E-01 5.56E-01

- + = Nuclide identified during the nuclide identification
- * = Energy line found in the spectrum
- > = MDA value not calculated
- @ = Half-life too short to be able to perform the decay correction
- ? = CAUTION: MDA value is inconsistent with Currie MDA at 95% confidence level

NUCLIDE MDA REPORT

Nuclide Library Used : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB

Nuclide Name	Energ (keV)	Yield(%)	Line MDA (pCi/grams)	Nuclide MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
 BE-7 NA-22 NA-24	477.59 1274.54 1368.53 2754.09	10.42 99.94 99.99 99.86	1.29E+00 1.32E-01 2.50E+12 1.64E+12	1.29E+00 1.32E-01 1.64E+12	5.18E-02 -8.24E-02 8.91E+11 8.84E+10	6.06E-01 5.95E-02 1.10E+12 5.82E+11

Analysis Report for 1603102-03

	•		*			<u> </u>	
	Nuclide	Energy	Yield(%)	Line MDA	Nuclide MDA	Activity	Dec. Level
	Name	(keV)		(pCi/grams)	(pCi/grams)	(pCi/grams)	(pCi/grams)
	AL-26	1808.65	99.76	7.19E-02	7.19E-02	4.99E-04	2.79E-02
+	K-40	1460.81 *		1.52E+00	1.52E+00	1.69E+01	6.96E-01
	AR-41	1293.64	99.16	1.00E+26	1.00E+26	1.00E+26	1.00E+20
Ç	TI-44	67.88	94.40	8.04E-02	8.04E-02	1.09E-02	3.92E-02
	11 44	78.34	96.00	1.09E-01		2.57E-01	5.34E-02
	SC-46	889.25	99.98	1.43E-01	1.43E-01	-3.62E-02	6.57E-02
	20-40	1120.51	99.99	2.65E-01		3.61E-01	1.26E-01
	V-48	983.52	99.98	3.81E-01	3.81E-01	-8.48E-02	1.74E-01
	V-40	1312.10	97.50		•	2.38E-01	2.20E-01
	CD E1	320.08	9.83		1.74E+00	7.71E-01	8.31E-01
	CR-51	834.83	99.97		1.23E-01	-7.22E-03	5.67E-02
	MN-54		99.96		1.15E-01	1.72E-03	5.19E-02
	CO-56	846.75	14.03		1.101.01	-2.90E-01	4.47E-01
		1037.75	67.00			2.95E-01	1.49E-01
		1238,25				-8.80E-01	2.76E-01
		1771.40	15.51			2.29E-01	2.93E-01
		2598.48	16.90		6,66E-02	-9.29E-03	3.20E-02
	CO-57	122.06	85.51		0,00E~02	3.86E-01	2.92E-01
		136.48	10.60		1.15E-01	5.69E-04	5.17E-02
	CO-58	810.76	99.40		3.06E-01	-2.85E-03	1.38E-01
	FE-59	1099.22	56-50		3.00E-0T	-1.45E-01	1.95E-01
		1291.56	43.20		1 210 01	9.13E-03	5.94E-02
	CO-60	1173.22	100.00		1.31E-01	7.85E-02	7.04E-02
		1332.49	100.00		0 505 01		1.78E-01
+	ZN-65	1115.52	=		3.79E-01	1.36E-01	7.57E+01
+	GA-67	93.31			1.53E+02	9.65E+01	8.39E+02
		208.95	2.24			1.69E+03	
		300.22	16.00			1.05E+02	1.03E+02
	SE-75	121.11	16.70		1.18E-01	-1.92E-01	1.75E-01
		136.00	59.20			4.54E-02	5.71E-02
		264.65	59.80			-1.33E-01	7.00E-02
		279.53	25.20			-5.80E-02	1.69E-01
		400.65	11.40	7.92E-01		-6.68E-01	3.72E-01
	RB-82	776.52	13.00	1.72E+00	1.72E+00	3.00E-01	7.93E-01
	RB-83	520.41	46.00	2.20E-01	2.20E-01	1.21E-02	1.02E-01
	110 00	529.64	30.30			-5.89E - 02	1.52E-01
		552.65	16.40			2.46E-02	3.10E-01
	KR-85	513.99	0.43		2.81E+01	2.71E+01	1.34E+01
	SR-85	513.99	99.2		1.65E-01	1.59E-01	7.85E-02
	Y-88	898.02	93.40		1.09E-01	-2.90E-02	6.60E-02
	1-00	1836.01	99.3			3.29E-02	4.48E-02
	NB-93M	16.57	9.4		9.75E+01	-1.25E+01	4.73E+01
	NB-94	702.63	100.0	and the second s	8.48E-02	6.56E-02	4.98E-02
	ND-34	871.10	100.0			-7.07E-02	3.79E-02
	ND OF	765.79	99.8		2.12E-01	1.30E-01	9.90E-02
	NB-95	235.69	25.0		1.01E+02	3.32E+00	4.90E+01
	NB-95M	724.18	43.7		2.39E-01	8.85E-02	1.55E-01
	ZR-95		55.3		2.052 01	-6.48E-02	1.10E-01
	¥0.00	756.72	6.2		7.69E+02	4.45E+02	5.42E+02
	MO-99	181.06			7.000,02	-1.82E+02	3.52E+02
		739.58	12.8			-1.47E+03	1.04E+03
		778.00	4.5		1.47E-01	-5.62E-02	6.86E-02
	RU-103	497.08	89.0			-3.93E-01	4.26E-01
	RU-106	621.84	9.8		9.24E-01	-3.94E-02	4.26E-01 4.44E-02
	AG-108M	433.93	89.9	0 9.42E-02	9.42E-02	-3.945-02	4.345-02

1603102-03

	Nuclide Name	Energy (keV)	Yield(%)	Line MDA (pCi/grams)	Nuclide MDA (pCi/grans)	Activity (pCi/grams)	Dec. Level (pCi/grams)
	AG-108M	614.37	90.40	1.16E-01	9.42E-02	-6.06E-01	5.41E-02
		722.95	90.50	1.11E-01		3.16E-02	5.15E-02
+	CD-109	88.03 *	3.72	4.20E+00	4.20E+00	3.25E+00	2.08E+00
	AG-110M	657.75	93.14	1.20E-01	1.20E-01	-1.33E-01	5.59E-02
		67,7.61	10.53	9.12E-01		2.10E-01	4.19E-01
		706.67	16.46	6.49E-01	·	-7.89E-02	3.00E-01 2.43E-01
		763.93	21.98	5.25E-01		4.74E-02	7.75E-02
		884.67	71.63	1.69E-01	4 #	6.51E-02 -4.72E-02	2.23E-01
		1384.27	23.94	5.07E-01	3.30E+02	-3.07E+01	1.58E+02
	CD-113M	263.70	0.02	3.30E+02	1.48E-01	-3.48E-01	2.33E+00
	SN-113	255.12	1.93 64.90	4.86E+00 1.48E-01	1.40501	-1.58E-02	7.01E-02
	mm100M	391.69	84.10	8.85E-02	8.85E-02	-1.38E-02	4.27E-02
	TE123M	159.00 602.71	97.87	1.34E-01	1.34E-01	-1.98E-02	6.23E-02
	SB-124	645.85	7.26	1.68E+00	1.515 01	7.30E-02	7.77E-01
		722.78	11.10	1.25E+00		3.55E-01	5.78E-01
		1691.02	49.00	1.92E-01		1.60E-02	7.44E-02
	I-125	35.49	6.49	3.54E+00	3.54E+00	2.70E+00	1.71E+00
	SB-125	176.33	6.89	9.22E-01	2.97E-01	-4.43E-01	4.43E-01
	05 120	427.89	29.33	2.97E-01		7.16E-02	1.40E-01
		463.38	10.35	9.84E-01		5.19E-01	4.66E-01
		600.56	17.80	5.63E-01		1.15E-01	2.63E-01
		635.90	11.32	7.82E-01		-9.92E-02	3.60E-01
	SB-126	414.70	83.30	5.09E-01	4.66E-01	4.36E-02	2.41E-01
		666.33	99.60	5.27E-01		1.52E-01	2.47E-01
		695.00	99.60	4.66E-01		3.62E-01	2.15E-01
		720.50	53.80	9.29E-01	4 055 01	-1.18E-01	4.31E-01 2.00E-01
+	SN-126	87.57 *		4.05E-01	4.05E-01	3.14E-01 -2.95E+01	2.30E+01
	SB-127	473.00	25.00	4.91E+01	3.79E+01	5.16E+00	1.74E+01
		685.20	35.70	3.79E+01		3.87E+01	4.87E+01
	100	783.80	14.70	1.06E+02 4.92E-01	4.92E-01	-1.61E-01	2.38E-01
	I-129	29.7t	57.00 13.20	1.45E+00	4.92b OI	2.70E-01	7.01E-01
		33.60 39.58	7.52	1.43E+00 1.67E+00		7.19E-01	8.06E-01
	T 123	284.30	6.05	1.39E+01	1.10E+00	4.38E-01	6.64E+00
	I - 131	364.48	81.20	1.10E+00	1.105	-1.40E-01	5.20E-01
		636.97	7.26	1.36E+01		4.58E+00	6.29E+00
		722.89	1.80	6.13E+01		1.74E+01	2.83E+01
	TE-132	49.72	13.10	2.58E+02	3.20E+01	2.79E+01	1.25E+02
	12 202	228.16	88.00	3.2CE+01		2.73E+00	1.54E+01
	BA-133	81.00	33.00	2.21E-01	2.21E-01	-9.57E-01	1.08E-01
		302.84	17.80	4.86E-01		1.24E-01	2.33E-01
		356.01	60.00	2.21E-01		1.56E-02	1.07E-01
	I-133	529.87	86.30	4.00E+08	4.00E+08	-7.16E+07	1.85E+08
	XE-133	81.00	38.00	7.49E+00	7.49E+00	-3.24E+01	3.65E+00
+	CS-134	563.23	8.38	1.07E+00	1.28E-01	-2.51E-01	4.99E-01 2.66E-01
		569.32	15.43	5.74E-01		-1.89E-01	8.43E-02
		604.70	•	1.75E-01		3.11E-02 8.39E-02	5.91E-02
		795.84	00.10	1.28E-01		7.74E-02	4.94E-01
		801.93	8.73	1.09E+00 5.15E-01	5.15E-01	9.46E-02	2.47E-01
	CS-135	268.24	16.00 22.50		1.00E+26	1.00E+26	1.00E+20
	@ I-135	1131.51 1260.41	28.60		T.00H120	1.00E+26	1.00E+20
	@	1700.41	20.00	1.000.20			

rt for 1603102-03

Nuclide Name	Energy (keV)	Yield(%)	Line MDA (pCi/grams)	Nuclide MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
@ I-135	1678.03	9.54	1.00E+26	1.00E+26	1.00E+26	1.00E+20
CS-136	153.22	7.46	3.66E+00	4.18E-01	-2.04E-01	1.77E+00
	163.89	4.61	5.76E+00		2.87E-01	2.78E+00
	176.55	13.56	2.02E+00		-8.87E-02	9.72E-01
	273.65	. 12.56	2.84E+00		4.51E-01	1.36E+00
	340.57	48.50	8.98E-01		-4.40E-02	4.31E-01
	818.50	99.70	4.18E-01		5.61E-02	1.90E-01
	1048.07	79.60	5.94E-01		-2.95E-01	2.69E-01
	1235.34	19.70	3.24E+00		-2.59E+00	1.49E+00
CS-137	661.65	85.12	1.34E-01	1.34E-01	4.11E-03	6.30E-02
LA-138	788.74	34.00	3.14E-01	1.75E-01	1.47E-01	1.45E-01
	1435.80	66.00	1.75E-01	0 015 00	-3.12E-02	7.72E-02 4.24E-02
CE-139	165.85	80.35	8.81E-02	8.81E-02	-1.64E-02 -1.89E+00	1.95E+00
BA-140	162.64	6.70	4.05E+00	1.67E+00	-1.89E+00 -2.54E+00	3.74E+00
	304.84	4.50	7.83E+00	*	-2.54E+00 -2.00E+00	5.36E+00
	423.70	3.20	1.14E+01		6.85E+00	9.23E+00
	437.55	2.00	1.96E+01		7.03E-01	7.82E-01
T. 7. 1.40	537.32	25.00	1.67E+00 1.97E+00	4.66E-01	8.33E-01	9.41E-01
LA-140	328.77	20.50	8.69E-01	4.005-01	-2.33E-01	4.08E-01
	487.03	45.50 23.50	1.75E+00	è	-8.09E-02	7.92E-01
•	815.85	95.49	4.66E-01		-1.71E-02	1.98E-01
OF 141	1596.49 145.44	48.40	2.36E-01	2.36E-01	5.44E-02	1.14E-01
CE-141 CE-143	57.36	11.80	7.75E+05	3.44E+05	-1.77E+05	3.76E+05
CE-143	293.26	42.00	3.44E+95	3.115.00	-3.96E+04	1.67E+05
	664.55	5.20	2.79E+06		4.18E+05	1.32E+06
CE-144	133.54	10.80	5.76E-01	5.76E-01	-6.03E-02	2.78E-01
PM-144	476.78	42.00	2.28E-01	8.49E-02	-7.30E-02	1.07E-01
111 111	618.01	98.60	8.49E-02		-1.72E-02	3.89E-02
	696.49	99.49	9.96E-02		6.82E-03	4.59E-02
PM-145	36.85	21.70	6.82E-01	3.62E-01	-1.23E-01	3.29E-01
	37.36	39.70	3.62E-01		1.34E-02	1.75E-01
	42.30	15.10	7.13E-01		-3.21E-02	3.45E-01
	72.40	2.31	3.86E+00		-6.14E+00	1.89E+00
PM-146	453.90	39.94	2.21E-01	2.21E-01	1.28E-02	1.04E-01
	735.90	14.01	6.35E-01		2.07E-02	2.89E-01
	747.13	13.10	7.54E-01		-2.41E-01	3.47E-01
ND-147	91.11	28.90	1.60E+00	1.60E+00	-1.07E+00	7.81E-01
	531.02	13.10	3.63E+00		1.07E-01	1.69E+00
PM-149	285.90	3.10	1.48E+04	1.48E+04	5.10E+03	7.08E+03
EU-152	121.78	20.50	2.59E-01	2.59E-01	-3.62E-02	1.25E-01
	244.69	5.40	1.86E+00		3.23E-01	9.01E-01
	344.27	19.13	3.95E-01		-4.40E-02	1.87E-01
	778.89	9.20	1.02E+00		-2.44E-01 -9.50E-02	4.67E-01 5.09E-01
	964.01	10.40	1.11E+00			7.45E-01
	1085.78	7.22	1.64E+00		7.45E-01 -3.79E-01	7.45E-01 5.88E-01
	1112.02	9.60	1.29E+00		2.53E-01	3.87E-01
	1407.95	14.94	8.64E-01	2.05E-01	-4.66E-03	9.92E-02
GD-153	97.43	31.30	2.05E-01	%.00E-01	-1.39E-01	1.30E-01
	103,18	22.20	2.70E-01	1.34E-01	9.00E-03	6.47E-02
EU-154	123.07	40.50 19.70	1.34E-01 5.15E-01	T.24D-0T	1.46E-01	2.38E-01
· ·	723.30	19.70	8.82E-01		4.62E-01	4.01E-01
	873.19	51.00	0.025 01			

1603102-03

	Nuclide	Energy		Yield(%)	Line MDA	Nuclide MDA	Activity	Dec. Level
	Name	(keV)			(pCi/grams)	(pCi/grams)	(pCi/grams)	(pCi/grams)
	EU-154	996.32		10.30	8.75E-01	1.34E-01	-6.37E-02	3.88E-01
	20 201	1004.76		17.90	6.30E-01		-1.02E-01	2.86E-01
		1274.45		35.50	3.65E-01	•	-2.29E-01	1.65E-01
	EU-155	86.50		30.90	2.63E-01	2.63E-01	1.96E-01	1.28E-01
		105.30		20.70	2.80E-01		3.55E-02	1.35E-01
	EU-156	811.77		10.40	2.82E+00	2.82E+00	-5.63E-01	1.27E+00
		1153.47		7.20	6.67E+00		2.39E+00	3.05E+00
		1230.71		8.90	5.88E+00		1.49E+00	2.70E+00
	HO-166M	184.4		72,60	1.13E-01	1.13E-01	1.82E-01	5.46E-02
		280.45		29.60	2.65E-01		1.06E-01	1.27E-01
		410.94		11.10	8.54E-01		2.58E-01	4.06E-01
		711.69		54.10	2.18E-01	F 505.01	1.46E-01	1.02E-01
	TM-171	66.72		0.14	5.72E+01	5.72E+01	3.55E+01	2.79E+01 7.67E-01
	HF-172	81.75		4.52	1.58E+00	5.22E-01	-6.86E+00 1.44E-01	2.52E-01
		125.81		11.30	5.22E-01	2 065100	1.44E-01 1.42E+00	2.60E+00
	LU-172	181.53		20.60	5.41E+00	3.06E+00	-2.97E+00	4.22E+00
		810.06		16.63	9.34E+00		3.17E+01	9.90E+00
		912.12		15.25	2.09E+01		-7.08E-01	1.38E+00
		1093.66		62.50	3.06E+00 1.11E+00	4.27E-01	-1.78E-01	5.38E-01
	LU-173	100.72		5.24 21.20	4.27E-01	4.276-01	4.03E-01	2.06E-01
	19E	272.11			1.20E-01	1.20E-01	-6.67E-03	5.70E-02
	HF-175	343.40		84.00	6.15E-01	7.68E-02	3.00E-02	3.01E-01
	LU-176	88.34		13.30 86.00	8.99E-02	7.003 02	-1.94E-03	4.34E-02
	*	201.83		94.00	7.68E-02		-4.30E-02	3.65E-02
	m > 100	306.78 67.75		41.20	2.18E-01	2.18E-01	2.96E-02	1.06E-01
	TA-182	1121.30		34.90	7.19E-01	2,102 01	1.14E+00	3.41E-01
		1189.05		16.23	8.47E-01		1.71E-01	3.81E-01
		1221.41		26.98	5.86E-01		7.96E-02	2.67E-01
		1231.02		11.44	1.53E+00		7.95E-01	7.01E-01
	IR-192	308.46		29.68	3.13E-01	2.26E-01	-1.22E-02	1.49E-01
	11/-132	468.07		48.10	2.26E-01		-2.61E-02	1.06E-01
	HG-203	279.15		77.30	1.51E-01	1.51E-01	-3.16E-02	7.21E-02
	BI-207	569.67		97.72	9.42E-02	9.42E-02	3.88E-02	4.39E-02
	DI 20.	1063.62		74.90	1.53E-01		4.30E-02	6.93E-02
+	TL-208	583.14	*	30.22	3.79E-01	5.65E-02	1.12E+00	1.79E-01
•	12 - 4 - 4	860.37		4.48	2.49E+00		1.05E+00	1.15E+00
		2614.66	*	35.85	5.65E-02		9.82E-01	0.00E+00
	BI-210M	262.00		45.00	1.76E-01	1.76E-01	4.45E-02	8.43E-02
		300.00		23.00	4.10E-01	·	2.00E-01	1.97E-01
+	PB-210	46.50	*	4.25	2.74E+00	2.74E+00	4.78E+00	1.34E+00
	PB-211	404.84		2.90	2.97E+00	2.97E+00	1.18E+00	1.41E+00
		831.96		2.90	4.07E+00		-3.64E-01	1.89E+00
+	BI-212	727.17	.ж	11.80	9.30E-01	9.30E-01	7.03E-01	4.32E-01
		1620.62		2.75	4.03E+00		1.00E+00	1.75E+00
+	PB-212	238.63	*	44.60	3.11E-01	3.11E-01	1.35E+00	1.52E-01
		300.09		3.41	2.76E+00		1.35E+00	1.33E+00
+	BI-214	609.31	*	46.30	3.73E-01	3.73E-01	1.82E+00	1.79E-01
		1120.29	*	15.10	1.26E+00		2.46E+00	5.95E-01
		1764.49	*	15.80	9.77E-01		1.49E+00	4.38E-01
		2204.22	*	4.98	1.90E+00	0 00- 01	2.39E+00	7.64E-01 3.20E-01
+	PB-214	295.21	*	19.19	6.58E-01	2.92E-01	1,47E+00	3.20E-01 1.41E-01
		351.92	*	37.19	2.92E-01		1.95E+00	1.415-01

Report for 1603102-03

SEDIMENT 2016-03-16A

	Nuclide Name	Energy (keV)		Yield(%)	Line MDA (pCi/grams)	Nuclide เกีDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
	RN-219	401.80		6.50	1.23E+00	1.23E+00	-1.15E-01	5.80E-01
	RA-223	323.87		3.88	2.21E+00	2.21E+00	-4.10E-01	1.06E+00
	RA-224	240.98		3.95	3.94E+00	3.94E+00	1.88E+01	1.93E+00
	RA-225	40.00		31.00	1.45E+00	1.45E+00	6.24E-01	7.00E-01
+	RA-226	186.21	*	3.28	3.23E+00	3.23E+00	3.82E+00	1.58E+00
	TH-227	50.10		8.40	1.09E+00	1.06E+00	1.18E-01	5.28E-01
		236.00		11,50	1.06E+00		3.51E-02	5.19E-01
	•	256.20		6.30	1.26E+00		-8.88E-02	6.03E-01
÷	AC-228	338.32	*	11.40	9.92E-01	5.59E-01	1.05E+00	4.79E-01
		911.07	*	27.70	5.59E-01		9.51E-01	2.62E-01
		969.11		16.60	9.61E-01		7.67E-01	4.51E-01
	TH-230	48.44		16.90	6.58E-01	6.58E-01	9.84E-02	3.21E-01
	111 200	62.85		4.60	1.86E+00		2.31E+00	9.08E-01
		67.67		0.37	2.05E+01		2.79E+00	1.00E+01
	PA-231	283.67		1.60	4.80E+00	3.74E+00	1.51E-01	2.29E+00
	111 231	302.67		2.30	3.74E+00		9.51E-01	1.79E+00
	TH-231	25.64		14.70	3.82E+00	1.12E+00	-6.23E-01	1.85E+00
	202	84.21		6.40	1.12E+00		-1.47E+00	5.46E-01
	PA-233	311.98		38.60	3.79E-01	3.79E-01	-8.05E-02	1.80E-01
	PA-234	131.20		20.40	3.00E-01	3.00E-01	8.89E-02	1.45E-01
	111 20 1	733.99		8.80	1.01E+00	•	1.96E-01	4.62E-01
		946.00		12.00	8.87E-01		-2.97E-02	4.03E-01
	PA-234M	1001.03		0.92	1.13E+01	1.13E-01	4.56E+00	5.10E+00
+	TH-234	63.29	*	3,80	2.98E+00	2.98E+00	2.18E+00	1.46E+00
.*	U-235	143.76		10.50	5.89E-01	5.89E-01	3.66E-01	2.84E-01
	0 200	163.35		4.70	1.31E+00		6.51E-02	6.30E-01
		205.31		4.70	1.71E+00		1.59E-01	8.25E-01
	NP-237	86.50		12.60	6.38E-01	6.38E-01	4.75E-01	3.12E-01
	NP-239	106.30		22.70	9.00E+02	9.00E+02	1,58E+02	4.35E+02
	111 200	228.16		10.70	2.53E+03		2.16E+02	1.22E+03
		277.60		14.10	1.94E+03		2.73E+02	9.27E+02
	AM-241	59.54		35.90	2.22E-01	2.22E-01	-4.20E-02	1.08E-01
+	AM-241	74.67	*	66.00	2.01E-01	2.01E-01	3.45E-01	9.89E-02
	CM-243	209.75		3.29	2.64E+00	5.56E-01	1.96E+00	1.28E+00
	Of1 240	228.14		10.60	7.28E-01		6.22E-02	3.50E-01
		277.60		14.00	5.56E-01	·	7.83E-02	2.66E-01

^{+ =} Nuclide identified during the nuclide identification

No Action Level results available for reporting purposes.

^{* =} Energy line found in the spectrum

> = MDA value not calculated

^{@ =} Half-life too short to be able to perform the decay correction

1603102-03

SEDIMENT 2016-03-16A

DATA REVIEW COMMENTS REPORT

Creation Date

Comment

User

No Data Review Comments Entered.

Sample Title: SEDIMENT 2016-03-16A

Elapsed Live time: 3600 Elapsed Real Time: 3612

a 1 . 1 .			1					
Channel -		0	0	0	0 '	o'	o '	0 `
1:	0 3	162	176	118	108	94	62	104
9:			59	68	68	68	75	60
17:	86	66		48	59	47	53	59
25:	65	73	66		53	72	41	62
33:	53	54	58	56	53 67	75 75	193	116
41:	55	58	49	52	72	76	69	68
49:	48	74	64	65	86	99	105	141
57:	63	71	77	83		81	102	96
65:	97	75	78	125	98 262	414	144	91
73:	101	132	246	255		91	122	176
81:	77	95	73	101	114	170	81	83
89:	99	114	115	93	181 52	56	50	61
97:	59	52	64	62		60 60	55	48
105:	55	60	66	57	59	34	46	42
113:	60	41	47	48	59 50	54 56	39	59
121:	41	44	43	57	50 4.6	58	51	50
129:	73	62	57	51	44 41	45	45	56
137:	50	54	59	33	45	66	42	48
145:	65	57	46	52	45 47	54	62	40
153:	49	58	65	56 40	37	56	45	46
161:	48	34	61	40	48	43	34	47
169:	44	51	35	36	31	47	32	42
177:	53	35	51	57 49	37	46	39	36
185:	46	99	130		39	36	47	36
193:	44	36	31	48 34	39	42	43	41
201:	29	48	40	34 37	32	31	40	45
209:	58	69	47	31	46	32	28	36
217:	38	36	36 40	36	29	. 30	27	28
225:	33	29	27	35	33	80	312	184
233:	33	31	100	40	30	23	23	20
241:	49	108	20	34	26	23	33	32
249:	22	26 26	31	36	24	25	27	23
257:	25	26 25	23	18	20	45	44	32
265:	23	23	23 24	24	20	29	17	25
273:	24		19	29	18	19	24	21
281:	26	20 15	17	22	20	19	100	190
289:	24	26	23	31	40	34	22	22
297:	40	13	22	16	16	16	13	20
305:	14	17	17	15	19	32	22	19
313:	15 14	22	29	23	18	18	31	20
321:	14 33	22 20	19	25	24	15	18	17
329:	33 16	49	72	2.2	14	15	16	12
337:	14	18	17	16	20	20	46	243
345: 353:	206	31	19	11	16	19	19	18
353: 361:	206 15	17	16	17	17	17	19	10
20T:	TO	Τ. /	10	<u>.</u> ,		<u> </u>		

369: 13 22 17 14 24 19 15 18

Sample Title: SEDIMENT 2016-03-16A

	Channel 3775: 383: 409: 4175: 3897: 4175: 3897: 4175: 3897: 4175			15 19 18 15 10 13 14 15 11 13 13 12 15 10 16 16 16 16 17 18 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	13 122 17 10 13 10 10 10 11 10 10 11 10 10 11 10 10 11 10 10	157 157 157 153 104 104 109 1138 1148 125 164 157 163 108 108 108 108 108 108 108 108 108 108	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		14 152434321109305728978676048689882050206764825737665353 121093057289786760482050206764825737665353
:	769: 777: 785: 793:	15 5 9 2	5 5 10 7	5 6 8 14	7	6	3 8 6	4 8 6 2	

 Channel Data Report
 4/13/2016
 8:03:07 AM
 Page
 3

 801:
 2
 6
 7
 7
 7
 10
 2
 8

Sample Title: SEDIMENT 2016-03-16A

Channel
865: 6 7 5 1 2 3 4 873: 4 5 6 8 4 4 5 889: 4 2 8 8 7 4 9 897: 7 6 7 5 7 4 9 9905: 6 3 5 4 7 23 41 913: 9 6 5 3 7 4 6 921: 4 1 6 4 4 4 9 921: 4 1 6 3 2 5 5 7 945: 2 4 7 6 2 6 4 9 945: 2 4 7 6 2 5 5 7 8 8 7 7 7

Channel Data Report 4/13/2016 8:03:07 AM Page 4

1233: 1 2 4 2 15 12 17 4

Sample Title: SEDIMENT 2016-03-16A

	Sample	Title:	SEDIMENT	2016-03	3-16A			
~1 7.1	,	•	. ,	1	1			
Channel					5	6	7	9 ່
1241:	3	5	4	3	1.	2	10	4
1249:	2	3 5	4	2 2	J.	2. 4	4	
1257:	4	5	3	2			4	4 3 8
1265:	2	11	3	4	6	4		ے 0
1273:	4	1	6	3	3	2	3	
1281:	7	3 2	1	8	3	5	5	0
1289:	4	2	3	2	3	4	3	2 2
1297:	8	7	2	1	2	6	4	2
1305:	2	1	3	0	6	6	2	1
1313:	4	5	2	9	3	2	2 2 6	. 1
1321:	3	5	2	1	1	1	2	7
1329:	1	7	4	3	5	2		5
1337:	4	1 5 7 3 3 5	1	2	5	3	1	2
1345:	1	3	1	3	0	1 2	1	1
1353:	4		1	3	2	2	3	4
1361:	2	0	2	2	2	3	2	2
1369:	2	2	1	2	0	3	1	6
1377:	7	7	1	4	4	2	2	0
1385:	2	2.	1	2	1	5	2	2
1393:	2	2	2	1	2	3	3 5	2
1401:	1	5	C	1	4	3	5	4
1409:	0	2 5 3 2	2	3	2	1	2	4
1417:	4	2	1	4	1	1	3	3 5
1425:	2	3	0	2 2	0	1	2	2
1433:	2 3 3	4	0	2	0	0	2 3 3	0
1441:		0	4	3	1	1		
1449:	1	3	0	1	3.	2	4 6	3 · ; 3 · ;
1457:	3 2	6	45	118	134	42	1	1
1465:		3	0	1	2	0	4	1
1473:	0	0	0	2	1	2 3	2	1
1481:	3	0	3 2	2	3	0	0	2
1489:	0	0	2	1	3 2 2 5	0	2	1
1497:	1	0	1	1	Z	3	0	Ô
1505:	. 2	3	4	7 0	0	0	2	2
1513:	2	0	0	•				
1513: 1521: 1529:	2	1	4	0	0 1	1 0 1	1	2
1529:	1	3	2	<u>ئ</u> 1	1	1	ب	1
1537:	3	Ţ	3	7 T	1	.l. 1	n	1
1545:	0	3	⊥	2	U d	1 0	2 1 3 0 3 2 1 1	2 1 1 2 0
1553:	2	1	3	0	2	1	2	2
1561:	0	0	1	3	ے 0	0	1	0
1569:	Ţ	2	⊥		2	n	1	Õ
1577:	2	0	5	2	1	2	์ า	2
1585:	0	3	0	۷. ٦	2	2	0	1
1593:	<u>+</u>	1 3 1 0 2 0 3 2 2 1 0	4 2 3 1 3 0 1 3 6 0 2 2 0	1	0	0 2 2 4	1	0 2 1 2 2 0
1601:	1	Z 1	<i>د.</i> 2	. <u>.</u> 1	0	1	1	2
1609:	1	i,	ے م	<u>1</u> A	2	1 2 0	2	0
1617:	Ţ	7	0	·4	1	0	1	1
1625:	2 1 3 0 2 0 1 2 0 1 1 1 1 2 0	0	O C	0 2 1 2 0 0 3 0 2 1 1 4 1 0	1	1	1 2 1 2 2	1 1
1633:	U	0	0	0	1	- 0	2	ō
1641:	0	0	0 0 1	1	1 4 0 2 0 2 4 2 0 0 2 1 1 1 1	1		0 1
1649:	0	1	1	$\frac{1}{2}$	ク	2	1	Ō
1657:	0	Ţ	۵.	۷.	۷	2	-	•

		•			1 /1 0 /00	3.6 0 0.	D. 07 70 104		Dago	5
Channel	Data			0	4/13/20	3	3:07 AM 0	0	Page 1	5
1665:		2	1	2	2		O	O	1.	
	Sam	ple Tit	le:	SEDIME	NT 2016-	U3-16A	1	1		ł
Channal 1673: 1689: 1705: 1713: 1729: 17745: 17745: 17761: 17785: 17769: 17785: 17809: 1809: 1809: 1809: 1809: 1809: 1809: 1809: 190			12111163012020100220000011100110001212102100022	001211012006021101130020002122011300001201211210000		1 0 1	0 0 0 1 1 1 2 1 0 1 2 3 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0	1 2 1 0 0 0 0 0 2 1 3 0 0 0 0 1 0 0 0		

Channel	Data Rep	port		4/13/2016	8:03:0	07 AM		Page
2529:	. 1	0	0	0	O	0	0	0
	Sample	Title:	SEDIMENT	г 2016-03-	-16A			·
Channel:::::::::::::::::::::::::::::::::::	000000000000000000000000000000000000000	100000010000010110000000000000000000000	000000102010010000010000000000000000000	000001000710000010000010000010000000000	001101100700001000000000000000000000000	001000001000111100000000001000010000000	000000111701000100010000001100000000000	001000003001020000100100100100000000000

Channel	Data	Rep	oort		4/13/20	16 8:0	3:07 AM		Page 9
2961:		0	1	0	0	0	0	0	0
	Samp	ple	Title:	SEDIME	NT 2016-	03-16A			
Channel 2969: 2977: 2985: 2993: 3009: 3017: 2985: 2993: 3009: 3017: 3009: 3017: 30		-10010000000100000001000000010000000000	010000000000000000000000000000000000000	000000100000000000000000000000000000000	0 0 0 0 0 0 1 0 0	000000000000001100000000000000000000000	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0

Channel	Data	Reg	oort		4/13/201	6 8:03	:07 AM		Page S
3393:		1	0	0	0	С	0	0	0
	Sam	ple	Title:	SEDIME	NT 2016-0	3-16A			
Channel 3409: 3417: 3425: 3431: 34497: 34497: 34497: 34497: 34573: 34573: 34573: 35569: 35569: 355691: 355691: 356673: 357693 3577297 377853 377893		-01001001000100000000000000000000000000	000000000000000000000000000000000000000		000000000000000000000000000000000000	000001000010010000000000000000000000000	001000000000000000000000000000000000000	000200000100000010000010010000000000000	000100000000000000000000000000000000000

Channel	Data Report			4/13/2016	8:03:	07 AM		Page 10
3825:	0	0	0	0	0	0	0	1
	Sample Titl	_e:	SEDIMEN	Т 2016-03-	16A			
Channel 3833: 3841: 3849:	0 0	- 0 0 0		 0 0 0	 0 0 0	 0 0	 0 0 0	I 0 0 0
3857: 3865: 3873: 3881:	0 1 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 0 0 0	0 0 0 0
3889: 3897: 3905: 3913: 3921:	0 0 0 0 0	0 1 0 0	0 0 .0 0	0 0 0 0	0 0 1 0	0 1 0 0	0 0 0	0 0 0
3929: 3937: 3945: 3953: 3961:	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 0 1 0 0	0 0 0 0 1	0 0 0 0	0 0 0 0
3969: 3977: 3985: 3993: 4001:	0 0 1 0	0 0 0	0 0 0 0	0 0 0 0	0 1 0 0	0 0 0 0	0 0 0 0	0 0 1 0 0
4009: 4017: 4025: 4033: 4041: 4049: 4057:	1 0 0 0 0 0 1	0 0 1 0 0	0 0 0 0 0 0	0 1 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 1 0 0 0
4065: 4073: 4081: 4089:	0 0 0 0	0 0 0 2	0 0 0	1 0 0 0	0 0 0	0 0 0	0 0 0	0

0000035692.CNF

1603102-04

SEDIMENT 2016-03-16A

GAMMA SPECTRUM ANALYSIS

Sample Identification

Sample Description Sample Type : 1603102-04 : SEDIMENT 20

: SEDIMENT 2016-03-16A

: SOIL

Sample Size Facility : 4.476E+02 grams

: Countroom

Sample Taken On Acquisition Started

: 3/16/2016 1:44:57PM : 4/13/2016 8:07:36AM

Procedure
Operator
Detector Name

: GAS-1402 pCi : Administrator : GE3

Geometry Live Time Real Time : GAS-1402 : 3600.0 seconds : 3613.2 seconds

Dead Time

: 0.37 %

Peak Locate Threshold
Peak Locate Range (in channels)
Peak Area Range (in channels)
Identification Energy Tolerance

: 2.50 : 1 - 4096 : 9 - 4096 : 1.000 keV

Energy Calibration Used Done On Efficiency Calibration Used Done On

: 10/25/2014 : 10/25/2014

Efficiency Calibration Description

. 1012312

Sample Number

: 35696

PEAK-TO-TOTAL CALIBRATION REPORT

Peak-to-Total Efficiency Calibration Equation

AG 4/13/14 SEDIMENT 2016-03-16A

PEAK LOCATE REPORT

Peak Locate Performed on

: 4/13/2016 9:07:51AM

Peak Locate From Channel

: 1 : 4096

Peak Locate To Channel

: 2.50

Peak Search Sensitivity

Pea	ak No.	Energy (keV)	Centroid Channel	Centroid Uncertainty	Peak Significance
	1	47.02	47.25	0.0000	0.00
	2	75.10	75.32	0.0000	0.00
	3	77.47	77.68	0.0000	0.00
	4	87.66	87.87	0.0000	0.00
	5	93.30	93.50	0.0000	0.00
	6	186.07	186.23	0.0000	0.00
	7	238.98	239.11	0.0000	0.00
	8	242.05	242.17	0.0000	0.00
	9	270.01	270.12	0.0000	0.00
	10	295.63	295.73	0,000	0.00
	11	300.54	300.63	0.0000	0.00
-	12	328.05	328.13	0.000	0.00
	13	338.79	338.86	0.0000	0.00
	14	352.19	352.26	0.0000	0.00
	15	431.61	431.64	0.0000	0.00
	16	463.75	463.76	0.0000	0.00
•	17	477.89	477.89	0.0000	0.00
	18	510.45	510.44	0.000	0.00
	19	527.51	527.49	0.0000	0.00
	20	569.83	569.79	0.0000	0.00
	21	583.52	583.47	0.0000	0.00
	22	609.68	609.62	0.0000	0.00
	23	624.70	624.63	0.0000	0.00
	24	694.73	694.63	0.0000	0.00
	25	767.97	767.84	0.0000	0.00
	26	794.68	794.54	0.0000	0.00
	27	893.26	893.07	0.000.0	0.00
	28	911.76	911.57	0.0000	0.00
	29	933.29	933.09	0.0000	0.00
	30	969.54	969.32	0.0000	0.00
	31	1106.48	1106.20	0.000	0.00
	32	1120.54	1120.26	0.0000	0.00
	33	1154.56	1154.26	0.0000	0.00
	34	1162.69	1162.39	0.0000	0.00
	35	1238.89	1238.55	0.0000	0.00
	36	1460.80	1460.38	0.0000	0.00
	37	1482.77	1482.34	0.0000	0.00
	38	1629.78	1629.30	0.0000	0.00
	39	1658.56	1658.06	0.0000	0.00
	40	1728,59	1728.07	0.0000	0.00
	41	1764.33	1763.80	0.0000	0.00
	42	1841.07	1840.51	0.0000	0.00

1603102-04

Peak No.	Energy (keV)	Centroid Channel	Centroid Uncertainty	Peak Significance
43	1847.27	1846.71	0.0000	0.00
44	1959.35	1958.76	0.0000	0.00
45	2039.87	2039.25	0.0000	0.00
46	2293.63	2292.93	0.0000	0.00
47	2614.12	2613.34	0.0000	0.00

^{? =} Adjacent peak noted Errors quoted at 2.000sigrna

Analysis Report for 1603102-04

SEDIMENT 2016-03-16A

PEAK ANALYSIS REPORT

Peak Analysis Performed on

: 4/13/2016 9:07:51AM

Peak Analysis From Channel

Peak Analysis To Channel

: 4096

	Peak No.	Energy (keV)	ROI start	ROI end	Peak Centroid	Net Peak Area	Net Area Uncertainty	Continuum Counts	FWHM (keV)
-	1	47.02	43 -	50	47.25	1.59E+02	81.02	9.89E+02	1.71
Μ	2	75.10	72 -	81	75.32	3.83E+02	79.57	9.00E+02	1.83
m	3	77.47	72 -	81	77.68	6.13E+02	87.66	8.57E+02	1.83
111	4	87.66	86 -	90	87.87	6.22E+01	70.86	1.07E+03	1.10
	5	93.30	91 -	99	93.50	1.75E+02	101.45	1.37E+03	1.86
	6	186.07	183 -	190	186.23	1.52E+02	68.53	6.84E+02	1.98
М	7	238.98	234 -	248	239.11	5.03E+02	δ1.64	3.24E+02	1.89
m	8	242.05	234 -	248	242.17	1.75E+02	64.65	3.24E+02	1.89
211	9	270.01	266 -	274	270.12	6.40E+01	55.90	4.42E+02	5.57
	10	295.63	292 -	299	295.73	2.76E+02	59.03	3.98E+02	1.86
	11	300.54	299 -	304	300.63	3.88E+01	36.28	2.38E+02	1.84
	12	328.05	325 -	332	328.13	4.71E+01	40.20	2.42E+02	3.97
	13	338.79	336 -	342	338.86	8.56E+01	40.76	2,43E+02	1.57
	14	352.19	347 -	357	352.26	4.52E+02	64.50	3.13E+02	1.97
	15	431.61	428 -	435	431.64	3.27E+01	30.33	1.31E+02	2.24
	16	463.75	4.58 -	469	463.76	4.42E+01	45.61	2.32E+02	2.00
	17	477.89	475 -	483	477.89	3.53E+01	35.29	1.67E+02	3.07
	18	510.45	505 -	514	510.44	1.14E+02	38.33	1.45E+02	2.11
	19	527.51	521 -	531	527.49	3.06E+01	37.79	1.69E+02	5.63
	20	569.83	567 -	574	569.79	4.15E+01	25.53	8.30E+01	2.58
	21	583.52	580 -	588	583.47	1.19E+02	39.51	1.67E+02	1.89
	22	609.68	606 -	612	609.62	3.14E+02	43.50	1.16E+02	2.14
	23	624.70	622 -	628	624.63	2.06E+01	19.90	5.89E+01	4.18
	24	694.73	691 -	698	694.63	2,17E+01	27.13	1.09E+02	1.68
	25	767.97	763 -	771	767.84	2.46E+01	29.30	1.17E+02	1.72
	26	794.68	791 -	799	794.54	2.34E+01	26.63	9.51E+01	1.83
	27	893.26	887 -	901	893.07	3.08E+01	27.61	6.63E+01	9.93
	28	911.76	907 -	918	911.57	1.23E+02	33.94	7.82E+01	2.20
	29	933.29	929 -	937	933.09	2.36E+01	23.75	7.29E+01	2.47
	30	969.54	965 -	972	969.32	5.43E+01	28.14	9.54E+01	1.33
	31	1106.48	1100 -		1106.20	3.01E+01	25.89	6.39E+01	7.94
	32	1120.54	1115 -		1120.26	6.95E+01	28,45	6.90E+01	2.06
	33	1154.56	1148 -		1154.26	2.36E+01	27.64	8.28E+01	1.97
	34	1162.69	1160 -		1162.39	1.38E+01	18.10	5.05E+01	1.23
	35	1238.89	1234 -		1238.55	2.67E+01	21.98	5.66E+01	2.25
	36	1460.80	1455 -		1460.38	3.33E+02	38.14	1.63E+01	2.14
	37	1482.77	1479 -		1482.34	1.01E+01	11.49	1.39E+01	1.34
	38	1629.78	1625 -		1629.30	8.42E+00	8.94	7.17E+00	2.47
	39	1658.56	1653 -		1658.06	9.53E+00	8.26	4.75E+00	1.92
	40	1728.59	1724 -		1728.07	1.96E+01	12.25	1.08E+01	3.71
	10								

1603102-04

SEDIMENT 2016-03-16A

Peak	Energy	ROI	ROI	Peak	Net Peak	Net Area	Continuum	FWHM
No.	(keV)	start	end	Centroid	Area	Uncertainty	Counts	(keV)
41 42 43 44 45 46 47	1764.33 1841.07 1847.27 1959.35 2039.87 2293.63 2614.12	1759 - 1837 - 1844 - 1954 - 2036 - 2290 - 2607 -	1843 1849 1964 2042 2295	1763.80 1840.51 1846.71 1958.76 2039.25 2292.93 2613.34	4.90E+01 5.13E+00 7.00E+00 1.50E+01 6.19E+00 4.50E+00 4.70E+01	14.00 7.52 5.29 10.11 6.65 5.74 13.71	0.00E+00 5.75E+00 0.00E+00 6.00E+00 3.63E+00 3.00E+00 0.00E+00	2.54 1.88 2.15 5.93 2.90 2.70 2.81

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

PEAK ANALYSIS REPORT

Peak Analysis Performed on

: 4/13/2016 9:07:51AM

Peak Analysis From Channel

Peak Analysis To Channel

hannel : 1 nnel : 4096

i	Peak No.	Energy (keV)	ROI start	ROI end	Net Peak Area	Net Area Uncertainty	Continuum Counts	Critical Level
	1	47.02	43 -	50	1.59E+02	81.02	9.89E+02	6.33E+01
М	2	75.10	72 -	81	3.83E+02	79.57	9.00E+02	4.93E+01
m	3	77.47	72 -	81	6.13E+02	87.66	8.57E+02	4.81E+01
411	4	87.66	86 -	90	6.22E+01	70,86	1.07E+03	5.68E+01
	5	93.30	91 -	99	1.75E+02	101.45	1.37E+03	8.05E+01
	6	186.07	183 -	190	1.52E+02	68.53	6.84E+02	5.26E+01
М	7	238.98	234 -	248	5.03E+02	61.64	3.24E+02	2.96E+01
m	8	242.05	234 -	248	1,75E+02	64.65	3.24E+02	2.96E+01
111	9	270.01	266 -	274	6.40E+01	55.90	4.42E+02	4.40E+01
	10	295.63	292 -	299	2.76E+02	59.03	3.98E+02	4.01E+01
	11	300.54	299 -	304	3.88E+01	36.28	2.38E+02	2.80E+01
	12	328.05	325 -	332	4.71E+01	40.20	2.42E+02	3.11E+01
	13	338.79	336 -	342	8.56E+01	40.76	2.43E+02	2.98E+01
	14	352.19	347 -	357	4.52E+02	64.50	3.13E+02	3.99E+01
	15	431.61	428	435	3.27E+01	30.33	1.31E+02	2.31E+01
	16	463.75	458 -	469	4.42E+01	45.61	2.32E+02	3.59E+01
	17	477.89	475 -	483	3.55E+01	35.29	1.67E+02	2.73E+01
	18	510.45	505 -	514	1.14E+02	38.33	1.45E+02	2.62E+01
	19	527.51	521 -	531	3.06E+01	37.79	1.69E+02	2.97E+01
	20	569.83	567 -	574	4.15E+01	25.53	8.30E+01	1.81E+01

1603102-04

SEDIMENT 2016-03-16A

Peak No.	Energy (keV)	ROI start	ROI end	Net Peak Area	Net Area Uncertainty	Continuum Counts	Critical Level
21	583.52	5 80 –	588	1.19E+02	39.51	1.67E+02	2.71E+01
22	609.68	606 -	612	3.14E+02	43.50	1.16E+02	2.07E+01
23	624.70	622 -	628	2.06E+01	19.90	5.89E+01	1.46E+01
24	694.73	691 -	698	2.17E+01	27.13	1.09E+02	2.09E+01
25	767.97	763 -	771	2.46E+01	29.30	1.17E+02	2.27E+01
26	794.68	791 -	799	2.34E+01	26.63	9.51E+01	2.04E+01
27	893.26	887 -	901	3.08E+01	27.61	6.63E+01	2.08E+01
28	911.76	907 -	918	1.23E+02	33.94	7.82E+01	2.11E+01
29	933.29	929 -	937	2.36E+01	23.75	7.29E+01	1.78E+01
30	969.54	965 -	972	5.43E+01	28.14	9.54E+01	1.97E+01
31	1106.48	1100 -	1112	3.01E+01	25.89	6.39E+01	1.93E+01
32	1120.54	1115 -	1125	6.95E+01	28.45	6.90E+01	1.89E+01
33	1154.56	1148 -	1159	2.36E+01	27.64	8.28E+01	2.13E+01
34	1162.69	1160 -	1166	1.38E+01	18.10	5.05E+01	1.36E+01
35	1238.89	1234 -	1242	2.67E+01	21.98	5.66E+01	1.60E+01
36	1460.80	1455 -	1465	3.33E+02	38.14	1.63E+01	9.13E+00
37	1482.77	1479 -	1486	1.01E+01	11.49	1.39E+01	7.87E+00
38	1629.78	1625 -	1632	8,42E+00	8.94	7.17E+00	5.60E+00
39	1658.56	1653 -	1661	9.63E+00	8.26	4.75E+00	4.48E+00
40	1728.59	1724 -	1733	1.96E+01	12.25	1.08E+01	6.96E+00
41	1764.33	1759 -	1767	4.90E+01	14.00	0.00E+00	0.00E+00
42	1841.07	1837 -	1843	5.13E+00	7.52	5.75E+00	4.93E+00
43	1847.27	1844 -	1849	7.00E+00	5.29	0.00E+00	0.00E+00
44	1959.35	1954 -	1964	1.50E+01	10.11	6.00E+00	5.34E+00
4.5	2039.87	2036 -	2042	6.19E+00	6.65	3.63E+00	3.63E+00
46	2293.63	2290 -	2295	4.50E+00	5.74	3.00E+00	3.18E+00
47	2614.12	2607 -	2617	4.70E+01	13.71	0.00E+00	0.00E+00

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

PEAK WITH NID REPORT

Peak Analysis Performed on

: 4/13/2016 9:07:51AM

Peak Analysis From Chancel Peak Analysis To Channel

: 4096

Tentative NID Library

: \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB

Peak Match Tolerance

: 1.000 keV

1603102-04

í	[∋] eak No.	Energy (keV)	ROi start	ROI end	Peak Centroid	Net Peak Area	Net Area Uncertainty	Continuum Counts	Tentative Nuclide
	1	47.02	43 -	50	47.25	1.59E+02	81.02	9.89E+02	PB-210
М	2	75.10	72 -	81	75.32	3.83E+02	79.57	9.00E+02	AM-243
m	3	77.47	72 -	81	77.68	6.13E+02	87.66	8.57E+02	TI-44
	4	87.66	86 -	90	87.87	6.22E+01	70.86	1.07E+03	SN-126
							,		CD-109
							502 45	1 275:02	LU-176 GA-67
	5	93.30	91 -	99	93.50	1.75E+02	101.45	1.37E+03 6.84E+02	RA-226
	6	186.07	183 -	190	186.23	1.52E+02	68.53 61.64	3.24E+02	PB-212
M	7	238.98	234 -	248	239.11	5.03E+02 1.75E+02	64.65	3.24E+02	
m	8	242.05	234 -	248 274	242.17 270.12	6.40E+01	55.90	4.42E+02	
	9	270.01	266 - 292 -	299	295.73	2.76E+02	59.03	3.98E+02	PB-214
	10 11	295.63 300.54	299 -	304	300.63	3.88E+01	36.28	2.38E+02	GA-67
	11	300.34	299	204	300.03	3.002.02			PB-212
									BI-210M
	12	328.05	325 -	332	328.13	4.71E+01	40.20	2.42E+02	LA-140
	13	338.79	336 -	342	338.86	8.56E+01	40.76	2.43E+02	AC-228
	14	352.19	347 -	357	352.26	4.52E+02	64.50	3.13E+02	PB-214
	15	431.61	429 -	435	431.64	3.27E+01	30.33	1.31E+02	
	16	463.75	45t -	459	463.16	4.425+01	45.61	2.32E+02	SB-125
	17	477.89	475 -	483	477.89	3.53E+01	35.29	1.67E+02	BE-7
	18	510.45	505 -	514	510.44	1.14E+02	38.33	1.45E+02	
	19	527.51	521 -	531	527.49	3.06E+01	37.79	1.69E+02	BI-207
	20	569.83	567 -	574	569.79	4.15E+01	25.53	8.30E+01	CS-134
					E00 47	1 100.00	39.51	1.67E+02	TL-208
	21	583.52	580 -	588	583.47	1.19E+02 3.14E+02	43.50	1.16E+02	BI-214
	22	609.68	606 -	612	609.62	2.06E+01	19.90	5.89E+01	D
	23	624.70	622 -	628	624.63 694.63	2.17E+01	27.13	1.09E+02	SB-126
	24	694.73	691 - 763 -	698 771	767.84	2.46E+01	29.30	1.17E+02	
	25	767.97 794.68	763 - 791 -	799	794.54	2.34E+01	26.63	9.51E+01	
	26 27	893.26	887 -	901	893.07	3.08E+01	27.61	6.63E+01	
	28	911.76	907 -	918	911.57	1.23E+02	33.94	7.82E+01	LU-172
	20	21.1.6,0	50.						AC-228
	29	933.29	929 -	937	933.09	2.36E+01	23.75	7.29E+01	
	30	969.54	965 -	972	969.32	5.43E+01	28.14	9.54E+01	AC-228
	31	1106.48	1100 -	1112	1106.20	3.01E+01	25.89	6.39E+01	
	32	1120.54	1115 -	1125	1120.26	6.95E+01	28.45	6.90E+01	
									BI-214
		₹ :				0.000.01	0.2 64	0 000.01	TA-182
	33	1154.56	1148 -	1159	1154.26	2.36E+01	27.64	8.28E+01 5.05E+01	
	34	1162.69	1160 -	1166	1162.39	1.38E+01	18.10 21.98	5.66E+01	 CO-56
	35	1238.89	1234 -	1242	1238.55	2.67E+01 3.33E+02	38.14	1.63E+01	
	36	1460.80	1455 -	1465	1460.38 1482.34	1.01E+01	11.49	1.39E+01	
	37	1482.77	1479 -	1486 1632	1629.30	8.42E+00	8.94	7.17E+00	
	38	1629.78	1625 - 1653 -	1661	1658.06	9.63E+00	8.26	4.75E+00	
	39 40	1658.56 1728.59	1724 -	1733	1728.07	1.96E+01	12.25	1.08E+01	
	40	1764.33	1759 -	1767	1763.80	4.90E+01	14.00	0.00E+00	
	41 42	1841.07	1837 -	1843	1840.51	5.13E+00	7.52	5.75E+00	
	42	1847.27	1844 -	1849	1846.71	7.00E+00	5.29	0.00E+00	
	44	1959.35	1954 -	1964	1958.76	1.50E+01	10.11	6.00E+00	
	45	2039.87	2036 -		2039.25	6.19E+00	6.65	3.63E+00	
	46	2293.63	2290 -		2292.93	4.50E+00	6.74	3.00E+00	

1603102-04

SEDIMENT 2016-03-16A

Peak	Energy	ŔOI	ROI	Peak	Net Peak	Net Area	Continuum	
No.	(keV)	start	end	Centroid	Area	Uncertainty	Counts	
47	2614.12	2607 -	2617	2613.34	4.70E+01	13.71	0.00E+00	TL-208

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

PEAK EFFICIENCY REPORT

Peak Analysis Performed on

: 4/13/2016 9:07:51AM

Peak No.	Energy (keV)	Net Peak Area	Net Area Uncertainty	Peak Efficiency	Efficiency Uncertainty
				· · · · · · · · · · · · · · · · · · ·	
1	47.02	1.59E+02	81,02	1.53E-02	1.58E-03
1 2	75.10	3.83E+02	79.57	2.37E-02	2.10E-03
3	77.47	6.13E+02	87.66	2.39E-02	2.18E-03
4	87.66	6,22E+01	70.86	2.44E-02	2.51E-03
5	93.30	1,75E+02	101.45	2.44E-02	2.40E-03
6	186.07	1.52E+02	68.53	1.83E-02	1.42E-03
1 7	238.98	5.03E+02	61.64	1.52E-02	1.18E-03
n 8	242.05	1.75E+02	64.65	1.51E-02	1.17E-03
9	270.01	6.40E+01	55.90	1.38E-02	1.04E-03
10	295.63	2.76E+02	59.03	1.28E-02	9.73E-04
11	300,54	3.88E+01	36.28	1.26E-02	9.67E-04
12	328.05	4.71E+01	40.20	1.17E-02	9.27E-04
13	338.79	8.56E+01	40.76	1.14E-02	9.12E-04
14	352.19	4.52E+02	64.50	1.11E-02	8.93E-04
15	431.61	3.27E+01	30.33	9.28E-03	7.97E-04
16	463.75	4.42E+01	45.61	8.72E-03	7.65E-04
17	477.89	3.53E+01	35.29	8.49E-03	7.51E-04
18	510.45	1.14E+02	38.33	8.02E-03	7.19E-04
19	527.51	3.06E+01	37.79	7.79E-03	7.02E-04
20		4,15E+01	25.53	7.28E-03	6.59E-04
21	583.52	1.19E+02	39.51	7.14E-03	6.46E-04
22	609.68	3.14E+02	43.50	6.87E-03	6.20E-04
23		2.06E+01	19.90	6.72E-03	6.05E-04
24		2.17E+01	27.13	6.13E-03	5.41E-04
25		2.46E+01	29.30	5.62E-03	4.81E-04
26		2.34E+01	26.63	5.46E-03	4.59E-04
27		3.08E+01	27.61	4.93E-03	3.79E-04
28		1.23E+02	33.94	4.85E-03	3.72E-04
29		2.36E+01	23.75	4.752-03	3.68E-04

1603102-04

SEDIMENT 2016-03-16A

Peak No.	Energy (keV)	Net Peak Area	Net Area Uncertainty	Peak Efficiency	Efficiency Uncertainty
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	969.54 1106.48 1120.54 1154.56 1162.69 1238.89 1460.80 1482.77 1629.78 1658.56 1728.59 1764.33 1841.07 1847.27 1959.35 2039.87 2293.63	5.43E+01 3.01E+01 6.95E+01 2.36E+01 1.38E+01 2.67E+01 3.33E+02 1.01E+01 8.42E+00 9.63E+00 1.96E+01 4.90E+01 5.13E+00 7.00E+00 1.50E+01 6.19E+00 4.50E+00	28.14 25.89 28.45 27.64 18.10 21.98 38.14 11.49 8.94 8.26 12.25 14.00 7.52 5.29 10.11 6.65 5.74	4.60E-03 4.12E-03 4.08E-03 3.98E-03 3.95E-03 3.75E-03 3.29E-03 3.03E-03 2.99E-03 2.90E-03 2.86E-03 2.77E-03 2.77E-03 2.77E-03 2.59E-03 2.59E-03 2.40E-03	3.61E-04 3.36E-04 3.33E-04 3.27E-04 3.25E-04 3.09E-04 2.69E-04 2.66E-04 2.44E-04 2.40E-04 2.29E-04 2.24E-04 2.13E-04 2.13E-04 2.13E-04 2.13E-04 2.13E-04 2.13E-04
47	2614.12	4.70E+01	13.71	2.24E-03	2.13E-04

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000 sigma

BACKGROUND SUBTRACT REPORT

Peak Analysis Performed on

· 4/13/2016 9:07:51AM

Env. Background File

: \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035178.CNF

1	Peak	Energy	Original	Orig. Area	Ambient	Backgr.	Subtracted	Subtracted
	No.	(keV)	Area	Uncertainty	Background	Uncert.	Area	Uncert.
M m M m	1 2 3 4 5 6 7 8 9 10 11	47.02 75.10 77.47 87.66 93.30 186.07 238.98 242.05 270.01 295.63 300.54 328.05	1.59E+02 3.83E+02 6.13E+02 6.22E+01 1.75E+02 1.52E+02 5.03E+02 1.75E+02 6.40E+01 2.76E+02 3.88E+01	81.02 79.57 87.66 70.86 101.45 68.53 61.64 64.65 55.90 59.03 36.28 40.20	3.04E+01 3.05E+00 7.72E+01 3.82E+01 1.06E+01	2.01E+01 2.15E+00 4.69E+00 5.87E+00 5.71E+00	1.28E+02 3.83E+02 6.13E+02 5.92E+01 9.73E+01 1.14E+02 4.92E+02 1.75E+02 6.40E+01 2.76E+02 3.88E+01 4.71E+01	8.35E+01 7.96E+01 8.77E+01 7.09E+01 1.02E+02 6.88E+01 6.19E+01 5.59E+01 5.59E+01 3.63E+01 4.02E+01

1603102-04

Peak No.	Energy (keV)	Original Area	Orig. Area Uncertainty	Ambient Background	Backgr. Uncert.	Subtracted Area	Subtracted Uncert.
13	338.79	8.56E+01	40.76			8.56E+01	4.08E+01
14	352.19	4.52E+02	64.50	0.00E+00	0.00E+00	4.52E+02	6.45E+01
15	431.61	3.27E+01	30.33			3.27E+01	3.03E+01
16	463.75	4.42E+01	45.61	•	2	4.42E+01	4.56E+01
17	477.89	3.53E+01	35.29			3.53E+01	3.53E+01
18	510.45	1.14E+02	38.33	·		1.14E+02	3.83E+01
19	527.51	3.06E+01	37.79		.*:	3.06E+01	3.78E+01
20	569.83	4.15E+01	25.53	•		4.15E+01	2.55E+01
21	583.52	1.19E+02	39.51	5.06E+00	2.98E+00	1.14E+02	3.96E+01
22	609.68	3.14E+02	43.50	2.01E+00	3.84E+00	3.12E+02	4.37E+01
23	624.70	2.06E+01	19.90			2.06E+01	1.99E+01
24	694.73	2.17E+01	27.13			2.17E+01	2.71E+01
25	767.97	2.46E+01	29.30			2.46E+01	2.93E+01
26	794.68	2.34E+01	26.63			2.34E+01	2.66E+01
27	893.26	3.08E+01	27.61			3.08E+01	2.76E+01
28	911.76	1.23E+02	33.94	2.99E+00	2.93E+00	1.20E+02	3.41E+01
29	933.29	2.36E+01	23.75			2.36E+01	2.37E+01
30	969.54	5.43E+01	28.14			5.43E+01	2.81E+01
31	1106.48	3.01E+01	25.89			3.01E+01	2.59E+01
32	1120.54	6.95E+01	28.45			6.95E+01	2.84E+01
33	1154.56	2.36E+01	27.64			2.36E+01	2.76E+01
34	1162.69	1.38E+01	18.10			1.38E+01	1.81E+01
35	1238.89	2.67E+01	21.98			2.67E+01	2.20E+01
36	1460.80	3.33E+02	38.14			3.33E+02	3.81E+01
37	1482.77	1.01E+01	11.49			1.01E+01	1.15É+01
38	1629.78	8.42E+00	8.94			8.42E+00	8.94E+00
3,9	1658.56	9.63E+00	8,26			9.63E+00	8.26E+00 1.22E+01
40	1728.59	1.96E+01	12.25			1.96E+01	1.22E+01 1.40E+01
41	1764.33	4.90E+01	14.00			4.90E+01	7.52E:00
42	1841.07	5.13E+00	7.52			5.13E+00	5.29E±00
43	1847.27	7.00E+00	5.29			7.00E+00	1.01E+01
44	1959.35	1.50E+01	10.11			1.50E+01	6.65E+00
45	2039.87	6.19E+00	6.65			6.19E+00 4.50E+00	5.74E+00
46	2293.63	4.50E+00	5.74			4.50E+00 4.70E+01	1.37E+01
47	2614.12	4.70E+01	13.71			4./UETUI	1.3/6701

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet Errors quoted at 2.000sigma

1603102-04

SEDIMENT 2016-03-16A

AREA CORRECTION REPORT REFERENCE PEAK / BKG. SUBTRACT

Peak Analysis Performed on

: 4/13/2016 9:07:51AM

Ref. Peak Energy

: 0.00

Reference Date

Peak Ratio

: 0.00

Uncertainty

: 0.00

Background File

: \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035178.CNF

Corrected Area is: Original * Peak Ratio - Background

,	Peak No.	Energy (keV)	Original Area	Orig. Area Uncertainty	Ambient Background	Backgr. Uncert.	Corrected Area	Corrected Uncert.
	1	47.02	1.59E+02	81.02	3.04E+01	2.01E+01	1.28E+02	8.35E+01
М	2	75.10	3.83E+02	79.57			3.83E+02	7.96E+01
m	3	77.47	6.13E+02	87.66			6.13E+02	8.77E+01
***	4	87.66	6.22E+01	70.86	3.05E+00	2.15E+00	5.92E+01	7.09E+01
	5	93.30	1.75E+02	101.45	7.72E+01	4.69E+00	9.73E+01	1.02E+02
	6	186.07	1.52E+02	68.53	3.82E+01	5.87E+00	1.14E+02	6.88E+01
М	7	238.98	5.03E+02	61.64	1.06E+01	5.71E+00	4.92E+02	6.19E+01
m	8	242.05	1.75E+02	64.65			1.75E+02	6.47E+01
	9	270.01	6.40E+01	55.90			6.40E+01	5.59E+01
	10	295.63	2.76E+02	59.03			2.76E+02	5.90E+01
	11	300.54	3.88E+01	36.28			3.88E+01	3.63E+01
	12	328.05	4.71E±91	40.20			4.71E+01	4.02E+01
	13	338.79	8.56±+01	40.76			8.56E+01	4.08E+01
	14	352.19	4.52E+02	G4.50	0.00E+00	0.00E+00	4.52E+02	6.45E+01
	15	431.61	3.27E+01	30.33			3.27E+01	3.03E+01
	16	463.75	4.42E+01	45,61			4.42E+01	4.56E+01
	17	477.89	3.53E+01	35.29			3.53E+01	3.53E+01 3.83E+01
	18	510.45	1.14E+02	38.33			1.14E+02	3.78E+01
	19	527.51	3.06E+01	37.79			3.06E+01	2.55E+01
	20	569.83	4.15E+01	25.53		0.007:00	4.15E+01	3.96E+01
	21	583.52	1.19E+02	39.51	5.06E+00	2.98E+00	1.14E+02	4.37E+01
	22	609.68	3.14E+02	43.50	2.01E+00	3.84E+00	3.12E+02	1.99E+01
	23	624.70	2.06E+01	19.90	•		2.06E+01 2.17E+01	2.71E+01
	24	694.73	2.17E+01	27.13			2.17E+01 2.46E+01	2.93E+01
	25	767.97	2.46E+01	29.30			2.46E+01 2.34E+01	2.66E+01
	26	794.68	2.34E+01	26.63			3.08E+01	2.76E+01
	27	893.26	3.08E+01	27.61	0.007.00	0 .00 E 100	1.20E+01	3.41E+01
	28	911.76	1.23E+02	33.94	2.99E+00	2.93E+00	2.36E+01	2.37E+01
	29	933.29	2.36E+01	23.75			5.43E+01	2.81E+01
	30	969.54	5.43E+01	28.14			3.43E+01 3.01E+01	2.59E+01
		1106.48	3.01E+01	25.89			6.95E+01	2.84E+01
		1120.54	6.95E+01	28.45			2.36E+01	2.76E+01
		1154.56	2.36E+01	27.64			1.38E+01	1.81E+01
		1162.69	1.38E+01	18.10			2.67E+01	2.20E+01
		1238.89	2.67E+01	21.98			3.33E+02	3.81E+01
		1460.80	3.332+02	38.14			1.01E+01	1.15E+01
		1482.77	1.01E+01	11.49		•	8.42E+00	8.94E+00
		1629.78	8.42E+00	8.94			9.63E+00	8.26E+00
		1658.56	9.63E+00	8.26			1.96E+01	1.22E+01
		1728.59	1.96E+01	12.25			4.90E+01	1.40E+01
	41	1764.33	4.90E+01	14.00			4.500.01	1,101,01

1603102-04

SEDIMENT 2016-03-16A

Peak Energy	Original	Orig. Area	Ambient	Backgr.	Corrected	Corrected
No. (keV)	Area	Uncertainty	Background	Uncert.	Area	Uncert.
42 1841.07 43 1847.27 44 1959.35 45 2039.87 46 2293.63 47 2614.12	5.13E+00 7.00E+00 1.50E+01 6.19E+00 4.50E+00 4.70E+01	7.52 5.29 10.11 6.65 5.74 13.71			5.13E+00 7.00E+00 1.50E+01 6.19E+00 4.50E+00 4.70E+01	7.52E+00 5.29E+00 1.01E+01 6.65E+00 5.74E+00 1.37E+01

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

NUCLIDE IDENTIFICATION REPORT

Nuclide Library Used

: \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB

IDENTIFIED NUCLIDES

Nuclide Name	Id Confidence	Energy (keV)		Yield(%)	Activity (pCi/grams)	Activity Uncertainty
BE-7	0.985	477.59	*	10.42	9.60E-01	9.63E-01
K-40	1.000	1460.81	*	10.67	1.59E+01	2.26E+00
GA-67	0.650	93.31	*	35.70	6.87E+01	2.70E+02
		208.95		2.24		
		300.22	*	16.00	1.18E+02	4.61E+02
CD-109	0.978	88.03	*	3.72	1.14E+00	1.37E+00
SN-126	0.999	87.57	*	37.00	1.10E-01	1.32E-01
BI-207	0.407	569.67	*	97.72	9.79E-02	6.09E-02
		1063.62		74.90		
TL-208	0.855	583.14	*	30.22	8.89E-01	3.19E-01
223 1.7 4		860.37		4.48		
		2614.66	*	35.85	9.82E-01	3.01E-01
PB-210	0.957	46.50	*	4.25	3.32E+00	2.19E+00
PB-212	0.980	238.63	*	44.60	1.22E+00	1.80E-01
		300.09	*	3.41	1.51E+00	1.42E+00
BI-214	0.918	£09.31	* *	46.30	1.65E+00	2.74E-01
		1120.29	*	15.10	1.89E+00	7.91E-01
		1764.49	*	15.80	1.82E+00	5.39E-01
		2204.22		4.98		
PB-214	0.983	295.21	*	19.19	1.88E+00	4.28E-01
		351.92	*	37.19	1.85E+00	3.03E-01
RA-226	0.997	186.21	*	3.28	3.18E+00	6.13E+00
AC-228	0.947	338.32	*	11.40	1.10E+00	5.32E-01
		911.07	*	27.70	1.50E+00	4.41E-01
		969.11	*	16.60	1.19E+00	6.25E-01

1603102-04

SEDIMENT 2016-03-16A

Nuclide Name	Id Confidence	Energy (keV)	Yield(%)	Activity (pCi/grams)	Activity Uncertainty
AM-243	0.971	74.67	* 66.00	4.11E-01	9.29E-02

- * = Energy line found in the spectrum.
- = Manually added nuclide.
- ? = Manually edited nuclide. Energy Tolerance: 1.000 keV

Nuclide confidence index threshold = 0.30

Errors quoted at 2.000sigma

UNIDENTIFIED PEAKS

Peak Locate Performed on

: 4/13/2016 9:07:51AM

Peak Locate From Channel
Peak Locate To Channel

: 1 : 4096

Pe	ak No.	No. Energy (keV) Peak Size (C		Peak CPS (%) Uncertainty	Peak Type	Tolerance Nuclide	
m	3	77.47	1.70180E-01	7.15			
m	8	242.05	4.85375E-02	18.50			
	9	270.01	1.77778E-02	43.67			
	12	328.05	1.30721E-02	42.71	Tol.	LA-140	
	15	431.61	9.09297E-03	46.33	Sum		
	16	463.75	1.22656E-02	51.64			
	1.8	510.45	3.15405E-02	16.88			
	19	527.51	8.48913E-03	61.83			
	23	624.70	5.71111E-03	48.39			
	24	694.73	6.03984E-03	62.39	Tol.	SB-126	
	25	767.97	6.82898E-03	59.59			
	26	794.68	6.51213E-03	56.80			
	27	893.26	8.56771E-03	44.76			
	29	933.29	6.54630E-03	50.39			
	31	1106.48	8.35126E-03	43.06			
	33	1154.56	6.55128E-03	58.60			
	34	1162.69	3.82479E-03	65.72			
	35	1238.89	7.41162E-03	41.19	Tol.	CO-56	
	37	1482.77	2.79412E-03	57.11			
	38	1629.78	2.33796E-03	53.13			
	39	1658.56	2.67361E-03	42.92			
	40	1728.59	5.4444E-03	31.24			
	42	1841.07	1.42361E-03	73.33			
	43	1847.27	1.94444E-03	37.80			
	44	1959.35	4.16667E-03	33.71			
	45	2039.87	1.71875E-03	53.75			
	46	2293.63	1.25000E-03	63.83			

1603102-04

SEDIMENT 2016-03-16A

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

NUCLIDE IDENTIFICATION REPORT

Nuclide Library Used

: \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB

IDENTIFIED NUCLIDES

Nuclide Name	ld Confidence	Energy (keV)	Yield(%)	Activity (pCi/grams)	Activity Uncertainty
BE-7	0.98	477.89	10.42	9.60E-01	9.63E-01
K-40	1.00	1460.81 *	10.67	1.59E+01	2.26E+00
GA-67	0.65	93.31 *	35.70	6.87E+01	2.70E+02
GA-07	0.00	208.95	2.24		
		300.22 *	16.00	1.18E+02	4.61E+02
CD-109	0.97	88.03 *	3.72	1.14E+00	1.37E+00
SN-126	0.99	87.57 *	37.00	1.10E-01	1.32E-01
BI-207	0.40	569.67 *	97,72	9.79E-02	6.09E-02
D1-201	0.10	1063.62	74.90		
TL-208	0.85	583.14 *	30.22	8.89E-01	3.19E-01
111-200	0.00	860.37	4.48	•	
		2614.66 *	35.85	9.82E-01	3.01E-01
PB-210	0.95	46.50 *	4.25	3.32E+00	2.19E+00
PB-210 PB-212	0.98	238.63 *	44.60	1.22E+00	1.80E-01
5D-717	0.50	300.09 *	3.41	1.51E+00	1.42E+00
BI-214	0.91	609.31 *	46.30	1.65E+00	2.74E-01
D1-514	0.71	1120.29 *	15.10	1.89E+00	7.91E-01
		1764.49 *	15.80	1.82E+00	5.39E-01
		2204.22	4.98		
PB-214	0.98	295.21 *	19.19	1.88E+00	4.28E-01
FU-714	0.50	351.92 *	37.19	1.85E+00	3.03E-01
RA-226	0.99	186.21 *	3.28	3,18E+00	6.13E+00
	0.94	338.32 *	11.40	1.10E+00	5.32E-01
AC-228	0.94	911.07 *	27.70	1.50E+00	4.41E-01
		969.11	16.60	1.19E+00	6.25E-01
AM-243	0.97	74.67 *	66.00	4.11E-01	9.29E-02

1603102-04

SEDIMENT 2016-03-16A

- * = Energy line found in the spectrum.
- = Manually added nuclide.
- ? = Manually edited nuclide.
- @ = Energy line not used for Weighted Mean Activity

Energy Tolerance: 1.000 keV

Nuclide confidence index threshold = 0.30

Errors quoted at 2.000sigma

INTERFERENCE CORRECTED REPORT

	Nuclide Name	Nuclide Id Confidence	Wt mean Activity (pCi/grams)	Wt mean Activity Uncertainty	Comments
	BE-7	0.985	9.60E-01	9.63E-01	
	K-40	1.000	1.59E+01	2.26E+00	
	GA-67	0.650	5.53E+01	2.09E+02	
?	CD-109	0.978	1.14E+00	1.37E+00	
3	SN-126	0.999	1.10E-01	1.32E-01	
•	BI-207	0.407	9.79E-02	6.09E-02	
	TL-208	0.855	9.38E-01	2.19E-01	
	PB-210	0.957	3.32E+00	2.19E+00	
	PB-212	0.980	1.21E+00	1.79E-01	
	BI-214	0.518	1.70E+00	2.33E-01	
		0.983	1.86E+00	2.47E-01	
	PB-214		3.18E+00	6.13E+00	
	RA-226	0.997		2.98E-01	
	AC-228	0.947	1.30E+00	9.29E-02	
	AM-243	0.971	4.11E-01	9.296-02	

- ? = nuclide is part of an endetermined solution
- X = nuclide rejected by the interference analysis
- @ = nuclide contains enery, lines not used in Weighted Mean Activity

Errors quoted at 2.000sigma

Analysis Report for 1603102-04

SEDIMENT 2016-03-16A

UNIDENTIFIED PEAKS

Peak Locate Performed on

: 4/13/2016 9:07:51AM

Peak Locate From Channel

: 1 : 4096 Peak Locate To Channel

Pe	ak No.	Energy (keV)	Peak Size (CPS)	Peak CPS (%) Uncertainty	Peak Type	Tolerance Nuclide	
m	3	77.47	1.70180E-01	7.15			
m	8	242.05	4.85375E-02	18.50			
	9	270.01	1.77778E-02	43.67			
	12	328.05	1.30721E-02	42.71	Tol.	LA-140	
	15	431.61	9.09297E-03	46.33	Sum		
	16	463.75	1.22656E-C2	51.64			
	18	510.45	3.15405E-02	16.88			
	19	527.51	8.48913E-03	61.83			
	23	624.70	5.71111E-03	48.39			
	24	694.73	6.03984E-03	62.39	Tol.	SB-126	
	25	767.97	6.82898E-03	59.59			
	26	794.68	6.51213E-03	56.80			
	27	893.26	8.56771E-03	44.76			
	29	933.29	6.54630E-03	50.39			
	31	1106.48	8.35126E-03	43.06			
	33	1154.56	6.55128E-03	58.60			
	34	1162.69	3.82479E-03	65.72			
	35	1238.89	7.41162E-03	41.19	Tol.	CO-56	
	37	1482.77	2.79412E-03	57.11			
	38	1629.78	2.33796E-03	53.13			
	39	1658.56	2.67361E-03	42.92			
	40	1728.59	5.44444E-03	31.24			
	42	1841.07	1.42361E-03	73.33			
	43	1847.27	1.94444E-03	37.80			
	44	1959.35	4.16667E-03	33.71			
	45	2039.87	1.71875E-03	53.75			
	46	2293.63	1.25000E-03	63.83			

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

Analysis Report for 1603102-04

SEDIMENT 2016-03-16A

NUCLIDE MDA REPORT

	Nuclide Name	Energy (keV)		Yie!d(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)
			٠	10:40	9.60E-01	1.56E+00	1.56E+00
÷	BE-7	477.59	*	10.42		1.37E-01	1.37E-01
+	NA-22	1274.54		99.94	-7.94E-02	· · · · · · · · · · · · · · · · · · ·	2.93E+12
+	NA-24	1368.53		99.99	8.90E+11	2.00E+12	2.93E+12 2.00E+12
		2754.09		99.86	2.27E+11	C 455-02	6.45E-02
+	AL-26	1808.65		99.76	-3.59E-02	6.45E-02	1.00E+00
+	K-40	1460.81	*	10.67	1.59E+01	1.00E+00	
+	@ AR-41	1293.64		99.16	1.00E+26	1.00E+26	1.00E+26
· †·	TI-44	67.88		94.40	-4.20E-02	8.14E-02	8.14E-02
		78.34		96.00	2.59E-01		1.09E-01
+	SC-46	889.25		99.98	-1.60E-02	1.29E-01	1.29E-01
		1120.51		99.99	2.84E-01	2 025-01	2.37E-01 3.82E-01
+	V-48	983.52		99.98	8.36E-02	3.82E-01	4.24E-01
	·	1312.10		97,50	2.10E-01 4.70E-01	1.60E+00	1.60E+00
+	CR-51	320.08		9.83		1.17E-01	1.17E-01
+	MN-54	834.83		99.97	3.89E-02	1.17E-01 1.42E-01	1.42E-01
4.	CO-56	846.75		99.96	4.31E-02	1.426-01	1.03E+00
		1037.75		14.03	-1.56E-01 1.93E-01		2.89E-01
		1238.25 1771.40		67.00 15.51	-1.08E+00		3.57E-01
		2598.48		16.90	-2.07E-01		4.15E-01
+	CO-57	122.06		85.51	4.57E-04	6.96E-02	6.96E-02
,	00 0.	136.48		10.60	2.97E-01		6.18E-01
+	CO-58	810.76		99.40	-1.17E-02	1.13E-01	i.13E-01
+	FE-59	1099.22		56.50	4.09E-02	3.02E-01	3.02E-01
-		1291.56		43.20	-1.56E-02		4.57E-01
+	CO-60	1173.22		100.00	-7.30E-02	1.25E-01	1.25E-01
		1332.49		100.00	7.48E-05		1.39E-01
+	ZN-65	1115.52		50.75	-4.37E-03	2.39E-01	2.39E-01
+	GA-67	93.31	*	35.70	6.87E+01	1.18E+02	1.18E+02
		208.95		2.24	8.15E+02		1.29E+03
		300.22	*	16.00	1.18E+02	1 100 01	1.79E+02
+	SE-75	121.11		16.70	-7.79E-02	1.19E-01	3.86E-01
		136.00		59,20	4.55E-02		1.19E-01 1.57E-01
		264.65 279.53		59.80 25.20	-2.92E-02 1.28E-01		3.92E-01
		400.65		11.40	4.84E-02		8.56E-01
+	RB-82	776.52		13.00	-6.08E-02	1.74E+00	1,74E+00
+	RB-83	520.41		46.00	6.78E-02	2.49E-01	
'	100	529.64		30.30			3.66E-01
		~			-2.41E-01		6.57E-01

1603102-04

+ KR-85 513.99		Nuclide Name	Energy (keV)		Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
+ SR-85 513.99 99.27 -4.28E-03 1.61E-01 1.61E-01 1.10E-01 1.836.01 99.38 2.91E-02 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.836.01 99.38 2.91E-02 1.10E-01 1.10E		WD_85	513 99			-7.31E-01	2.75E+01	2.75E+01	
+ Y-88								1.61E-01	
1836.01				•					
NB-93M	т								
+ NB-94 702.63 100.00 -6.79E-03 8.94E-02 1.06E-01 871.10 100.00 -1.21E-02 8.94S-02	4-						9.89E+01		•
## NB-95								1.06E-01	
+ NB-95	т	ND - 34							
+ NB-95M 235.69 25.00 7.62E+01 1.01E+02 1.01E+02 1.01E+02 + 2R-95 724.18 43.70 1.56E-02 2.47E-01 3.72E-01 + MO-99 181.06 6.20 2.94E+02 8.58E+02 1.13E+03 739.58 12.80 -1.38E+02 8.58E+02 1.13E+03 + RU-103 497.08 89.00 4.67E-02 1.60E-01 1.60E-01 + RU-106 621.84 9.80 -1.22E-01 8.78E-01 8.78E-01 + RO-108M 433.93 89.90 -1.87E-02 9.06E-02 9.06E-02 614.37 90.40 -7.50E-02 1.30E-01 1.30E-01 + CD-109 88.03 3.72 1.14E+00 2.24E+00 2.24E+01 + AG-110M 657.75 93.14 -5.94E-02 1.20E-01 1.20E-01 + AG-110M 657.75 93.14 -5.94E-02 1.20E-01 1.20E-01 + AG-1	+	NR-95					2.08E-01		
## ZR-95							1.01E+02	1.01E+02	
756.72 55.30 1.00E-01 2.47E-01 + MO-99 181.06 6.20 2.94E+02 8.58E+02 1.13E+03 778.00 4.5C -1.76E+02 2.47E+03 + RU-103 497.08 89.00 4.67E-02 1.60E-01 1.60E-01 + RU-106 621.84 9.80 -1.22E-01 8.78E-01 8.78E-01 + AG-108M 433.93 89.90 -1.87E-02 9.06E-02 9.06E-02 614.37 90.40 -7.50E-02 1.30E-01 + CD-109 88.03 * 3.72 1.14E+00 2.24E+00 2.24E+00 + AG-110M 657.75 93.14 -5.94E-02 1.20E-01 1.20E-01 + AG-110M 657.75 93.14 -5.94E-02 1.20E-01 1.20E-01 - 763.93 21.98 -1.18E-01 6.49E-01 - 184.27 23.94 -2.44E-01 1.46E-01 - 184.27 23.94 -2.44E-01 4.70E-01 + SN-113 255.12 1.93 -1.02E+00 1.66E-01 4.63E+00 - 391.69 64.90 8.31E-02 + SB-124 602.71 97.87 5.66E-02 1.44E-01 1.44E-01 - 645.55 7.26 -1.20E-01 1.39E+00 - 189.02 49.00 -6.93E-02 1.39E+00 - 1.39E+00 - 409.00 -6.93E-02 1.39E+00 - 1.39E+00 - 409.00 -6.93E-02 -2.44E-01 1.39E+00 - 1.39E+00 - 409.00 -6.93E-02 -2.44E-01 -2.44E-01 - 1.39E+00 - 409.00 -6.93E-02 -2.44E-01 -2.44E-01 - 1.39E+00 - 409.00 -6.93E-02 -2.44E-01 -2.44E-01 - 1.39E+00 - 409.00 -6.93E-02 -2.44E-01 -2.44E-01 - 58B-125 176.33 6.99 -3.10E-02 -2.94E-01 -2.94E-01 - 427.89 29.33 5.28E-02 -2.40E-01 - 427.89 29.33 5.28E-02 -2.40E-01 - 427.89 29.33 5.28E-02 -2.94E-01 -2.94E-01 - 58B-125 176.33 6.99 -3.10E-02 -2.94E-01 -2.94E-01 - 58B-126 414.70 83.30 -9.20E-02 4.64E-01 -4.64E-01 - 58B-126 414.70 83.30 -9.20E-02 4.64E-01 -4.64E-01 - 58B-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01 - 58B-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01								3.72E-01	
+ MO-99 181.06 6.20 2.94E+02 8.58E+02 1.13E+03 739.58 12.80 -1.38E+02 8.58E+02 2.47E+03 497.08 89.00 4.5C -1.76E+02 2.47E+03 497.08 89.00 4.67E-02 1.60E-01	7	2K-33						2.47E-01	
739.58 12.80 -1.38E+02 2.47E+03 + RU-103 497.08 89.00 4.5€ -1.76E+02 2.47E+03 + RU-106 621.84 9.80 -1.22E-01 8.78E-01 8.78E-01 + RU-106 621.84 9.80 -1.22E-01 8.78E-01 8.78E-01 + AG-108M 433.93 89.90 -1.87E-02 9.06E-02 9.06E-02 - 722.95 90.50 -8.05E-02 1.30E-01 + AG-110M 657.75 93.14 -5.94E-02 1.20E-01 1.20E-01 - 763.93 21.98 -1.18E-01 6.49E-01 - 763.93 21.98 -1.18E-01 6.49E-01 - 763.93 21.98 -1.18E-01 6.49E-01 - 1384.27 23.94 -2.44E-01 4.70E-01 + SN-113 255.12 1.93 -1.02E+00 1.66E-01 4.63E+00 - 391.69 64.90 8.31E-02 1.66E-01 4.63E+00 - 391.69 64.90 8.31E-02 1.66E-01 4.63E+00 - 1645.55 7.26 -1.20E-01 1.39E+00 - 1691.02 49.00 -6.93E-02 1.44E-01 1.39E+00 - 1691.02 49.00 -6.93E-01 1.39E+00 1.35IE+00 - 1691.02 49.00 -6.93E-01 1.39E+00 1.35IE+00 - 1691.02 49.00 -6.93E-01 1.39E+00 1.57BE-01 - 1691.02 49.00 -6.93E-01 5.51E+00 - 1691.02 49.00 -6.93E-01 5.51E+00 - 1691.02 49.00 -6.93E-01 5.58E-01 - 17.80 1.93E-01 5.78E-01 - 18.91E-01 4.70E-01 5.34E-01 - 19.91E-01 4.64E-01 5.34E-01 - 19.91E-01 5.34E-01	4.	MO-99					8.58E+02		
T78.00 4.50 -1.76E+02 2.47E+03 H RU-103 497.08 89.00 4.67E-02 1.60E-01 1.60E-01 H RU-106 621.84 9.80 -1.2E-01 8.78E-01 8.78E-01 H AG-108M 433.93 89.90 -1.87E-02 9.06E-02 9.06E-02 H CD-109 88.03 * 3.72 1.14E+00 2.24E+00 2.24E+01 + AG-110M 657.75 93.14 -5.94E-02 1.20E-01 1.20E-01 + AG-113M 263.70 0.02 2.245E+01 3.52E+02 3.52E+01 + SN-1	•	110 33						8.58E+02	
+ RU-103 497.08 89.00 4.67E-02 1.60E-01 1.60E-01 + RU-106 621.84 9.80 -1.22E-01 8.78E-01 9.06E-02 614.37 90.40 -7.50E-02 1.30E-01 1.24E-01 + CD-109 88.03 * 3.72 1.14E+00 2.24E+00 2.24E+00 + AG-110M 657.75 93.14 -5.94E-02 1.20E-01 1.20E-01 677.61 10.53 3.43E-03 8.83E-01 6.49E-01 1.20E-01 766.67 16.46 -2.23E-01 6.49E-01 1.46E-01 884.67 71.63 1.48E-02 1.46E-01 1.46E-01 1384.27 23.94 -2.44E-01 4.70E-01 4.70E-01 + SN-113 255.12 1.93 -1.02E+00 1.66E-01 4.63E+00 + SB-124 602.71 97.87 5.68E-02 1.44E-01 1.44E-01 + SB-125 7.26 -1.20E-01 1.39E+00 1.39E+00 + T-1223 35.49 64.90 6.00E-01 1.34E-01 <									
+ AG-108M 433.93	+	RU-103			89.00	4.67E-02	1.60E-01	1.60E-01	
The content of the	+	RU-106	621.84		9.80	-1.22E-01	8.78E-01	8.78E-01	
CD-109	+	AG-108M	433.93		89.90	-1.87E-02	9.06E-02	9.06E-02	
+ CD-109 88.03 * 3.72 1.14E+00 2.24E+00 2.24E+00 + AG-110M 657.75 93.14 -5.94E-02 1.20E-01 1.20E-01 677.61 10.53 3.43E-03 8.83E-01 706.67 16.46 -2.23E-01 6.49E-01 884.67 71.63 1.48E-02 1.48E-01 1.384.27 23.94 -2.44E-01 4.70E-01 + CD-113M 263.70 0.02 -2.45E+01 3.52E+02 3.52E+02 + SN-113 255.12 1.93 -1.02E+00 1.66E-01 4.63E+00 391.69 64.90 8.31E-02 1.66E-01 4.63E+00 + TE123M 159.00 84.10 2.57E-02 8.85E-02 8.85E-02 + SB-124 602.71 97.87 5.68E-02 1.44E-01 1.44E-01 645.35 7.26 -1.20E-01 1.70E+00 7722.78 11.10 -9.03E-01 1.39E+00 1691.02 49.00 -6.93E-02 2.40E-01 + SB-125 176.33 6.99 -3.10E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 463.38 10.35 4.82E-01 9.67E-01 427.89 29.33 5.28E-02 463.38 10.35 4.82E-01 9.67E-01 666.33 99.60 4.17E-02 5.07E-01 5.78E-01 635.90 11.32 2.56E-01 8.91E-01 4.64E-01 4.64E-01 5.78E-01 5.78E-01 5.78E-01 7.70E-01 5.78E-01 5.78E-01 7.70E-01 7.70E-			614.37		90.40	-7.50E-02			•
+ AG-110M 657.75 93.14 -5.94E-02 1.20E-01 1.20E-01 677.61 10.53 3.43E-03 8.83E-01 706.67 16.46 -2.22E-01 6.49E-01 763.93 21.98 -1.18E-01 1.64E-01 1384.27 23.94 -2.44E-01 4.70E-01 + CD-113M 263.70 0.02 -2.45E+01 3.52E+02 3.52E+02 + SN-113 255.12 1.93 -1.02E+00 1.66E-01 4.63E+00 1391.69 64.90 8.31E-02 + TE123M 159.00 84.10 2.57E-02 8.85E-02 8.85E-02 + SB-124 602.71 97.87 5.68E-02 1.44E-01 1.44E-01 645.35 7.26 -1.20E-01 1.70E+00 722.78 11.10 -9.03E-01 1.39E+00 1691.02 49.00 -6.93E-02 2.40E-01 + SB-125 176.33 6.99 -3.10E-02 2.94E-01 8.93E-01 + SB-125 176.33 6.99 -3.10E-02 2.94E-01 8.93E-01 + SB-125 176.33 6.99 -3.10E-02 2.94E-01 8.93E-01 -600.56 17.80 1.93E-01 5.78E-01 -635.90 11.32 2.56E-01 8.91E-01 + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 -666.33 99.60 4.17E-02 5.77E-01 -695.00 99.60 2.12E-01 5.34E-01 -720.50 53.80 1.15E-01 9.31E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01			722.95						•
677.61 10.53 3.43E-03 6.83E-01 706.67 16.46 -2.23E-01 6.49E-01 763.93 21.98 -1.18E-01 1.64E-01 884.67 71.63 1.48E-02 1.48E-01 1384.27 23.94 -2.44E-01 4.70E-01 + CD-113M 263.70 0.02 -2.45E+01 3.52E+02 3.52E+02 + SN-113 255.12 1.93 -1.02E+00 1.66E-01 4.63E+00 391.69 64.90 8.31E-02 1.66E-01 + TE123M 159.00 84.10 2.57E-02 8.85E-02 8.85E-02 + SB-124 602.71 97.87 5.68E-02 1.44E-01 1.44E-01 645.35 7.26 -1.20E-01 1.70E+00 722.78 11.10 -9.03E-01 1.39E+00 1691.02 49.00 -6.93E-02 2.40E-01 + I-125 35.49 6.49 6.00E-01 3.51E+00 3.51E+00 + SB-125 176.33 6.89 -3.10E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 463.38 10.35 4.82E-01 9.67E-01 600.56 17.80 1.93E-01 5.78E-01 635.90 11.32 2.56E-01 9.67E-01 635.90 11.32 2.56E-01 8.91E-01 + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 -666.33 99.60 4.17E-02 5.07E-01 695.00 99.60 2.12E-01 5.34E-01 720.50 53.80 1.15E-01 9.31E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 5.25E+01	+	CD-109	88.03	*	3.72				
706.67 706.67 706.67 706.67 706.89 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 7063.93 7063.93 7063.93 7063.93 7063.93 7062.44E-01 7064E-01 70666.33 7066E-01 7066E-	+	AG-110M	657.75		93.14	-5.94E-02	1.20E-01		
763.93 21.98 -1.18E-01 1.64E-01 884.67 71.63 1.48E-02 1.48E-01 1384.27 23.94 -2.44E-01 4.70E-01 + CD-113M 263.70 0.02 -2.45E+01 3.52E+02 3.52E+02 + SN-113 255.12 1.93 -1.02E+00 1.66E-01 4.63E+00 391.69 64.90 8.31E-02 1.66E-01 + TE123M 159.00 84.10 2.57E-02 8.85E-02 8.85E-02 + SB-124 602.71 97.87 5.68E-02 1.44E-01 1.44E-01 645.35 7.26 -1.20E-01 1.70E+00 722.78 11.10 -9.03E-01 1.39E+00 1691.02 49.00 -6.93E-02 2.40E-01 + I-125 35.49 6.49 6.00E-01 3.51E+00 3.51E+00 + SB-125 176.33 6.39 -3.10E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 9.67E-01 600.56 17.80 1.93E-01 5.78E-01 600.56 17.80 1.93E-01 5.78E-01 635.90 11.32 2.56E-01 9.67E-01 635.90 11.32 2.56E-01 5.78E-01 635.90 99.60 4.17E-02 5.07E-01 695.00 99.60 2.12E-01 5.34E-01 720.50 53.80 1.15E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01									
884.67 71.63 1.48E-02 1.48E-01 1384.27 23.94 -2.44E-01 4.70E-01 1384.27 0.02 -2.45E+01 3.52E+02 3.52E+02 1.02 -113M 263.70 0.02 -2.45E+01 3.52E+02 3.52E+02 1.03 -1.02E+00 1.66E-01 4.63E+00 1.66E-01 4.63E+00 1.66E-01 4.63E+00 1.66E-01 4.63E+00 1.66E-01 4.63E+00 1.66E-01 4.63E+00 1.66E-01 4.64E+01 1.66E-01 4.64E+01 1.66E-01 4.64E+01 1.70E+00 1.70E+00 1.70E+00 1.70E+00 1.70E+00 1.70E+00 1.70E+00 1.39E+00 2.40E-01 1.70E+00 1.39E+00 2.40E-01 1.70E+00 1.39E+00 2.40E-01 1.70E+00 1.39E+00 2.40E-01 1.70E+00 1.39E+00 2.40E-01 1.70E+00 1.39E+00 2.40E-01 1.70E+00 1.39E+00 2.40E-01 1.70E+00 1.39E+00 2.40E-01 1.70E+00 1.39E+00 2.40E-01 1.70E+00 1.39E+00 2.40E-01 1.70E+00 1.39E+00 2.40E-01 1.70E+00 1.39E+00 2.40E-01 1.70E+00 1.7							1		
1384.27									
+ CD-113M 263.70									
+ SN-113	4	CD-113M					3.52E+02		
391.69 64.90 8.31E-02 1.66E-01 + TE123M 159.00 84.10 2.57E-02 8.85E-02 8.85E-02 + SB-124 602.71 97.87 5.68E-02 1.44E-01 1.44E-01 645.35 7.26 -1.20E-01 1.70E+00 722.78 11.10 -9.03E-01 1.39E+00 1691.02 49.00 -6.93E-02 2.40E-01 + I-125 35.49 6.49 6.00E-01 3.51E+00 3.51E+00 + SB-125 176.33 6.39 -3.10E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 463.38 10.35 4.82E-01 9.67E-01 600.56 17.80 1.93E-01 5.78E-01 635.90 11.32 2.56E-01 + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 666.33 99.60 4.17E-02 5.07E-01 695.00 99.60 2.12E-01 5.34E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 5.25E+01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01								4.63E+00	
+ TE123M 159.00 84.10 2.57E-02 8.85E-02 8.85E-02 + SB-124 602.71 97.87 5.68E-02 1.44E-01 1.44E-01 645.35 7.26 -1.20E-01 1.70E+00 722.78 11.10 -9.03E-01 1.39E+00 1691.02 49.00 -6.93E-02 2.40E-01 + T-125 35.49 6.49 6.00E-01 3.51E+00 + SB-125 176.33 6.39 -3.10E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 463.38 10.35 4.82E-01 9.67E-01 600.56 17.80 1.93E-01 5.78E-01 635.90 11.32 2.56E-01 9.67E-01 635.90 11.32 2.56E-01 + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 666.33 99.60 4.17E-02 5.07E-01 695.00 99.60 2.12E-01 5.34E-01 720.50 53.80 1.15E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01		DIV 113						1.66E-01	
+ SB-124 602.71 97.87 5.68E-02 1.44E-01 1.44E-01 645.35 7.26 -1.20E-01 1.70E+00 722.78 11.10 -9.03E-01 1.39E+00 1691.02 49.00 -6.93E-02 2.40E-01 + I-125 35.49 6.49 6.00E-01 3.51E+00 3.51E+00 + SB-125 176.33 6.99 -3.10E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 9.67E-01 600.56 17.80 1.93E-01 9.67E-01 600.56 17.80 1.93E-01 5.78E-01 635.90 11.32 2.56E-01 + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 666.33 99.60 4.17E-02 5.07E-01 666.33 99.60 4.17E-02 5.07E-01 720.50 53.80 1.15E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01	-	TE123M					8.85E-02	8.85E-02	
645.35 7.26 -1.20E-01 1.70E+00 722.78 11.10 -9.03E-01 2.40E-01 1691.02 49.00 -6.93E-02 2.40E-01 + I-125 35.49 6.49 6.00E-01 3.51E+00 3.51E+00 + SB-125 176.33 6.89 -3.10E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 463.38 10.35 4.82E-01 9.67E-01 600.56 17.80 1.93E-01 5.78E-01 635.90 11.32 2.56E-01 8.91E-01 + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 666.33 99.60 4.17E-02 5.07E-01 695.00 99.60 2.12E-01 5.34E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01							1.44E-01	1.44E-01	
722.78	•	05 151						1.70E+00	
1691.02 49.00 -6.93E-02 2.40E-01 + I-125 35.49 6.49 6.00E-01 3.51E+00 + SB-125 176.33 6.89 -3.10E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 9.67E-01 463.38 10.35 4.82E-01 9.67E-01 5.78E-01 600.56 17.80 1.93E-01 8.91E-01 8.91E-01 + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 666.33 99.60 4.17E-02 5.07E-01 5.34E-01 695.00 99.60 2.12E-01 5.34E-01 720.50 53.80 1.15E-01 9.31E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01									
+ SB-125 176.33 6.89 -3.10E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 463.38 10.35 4.82E-01 9.67E-01 600.56 17.80 1.93E-01 5.78E-01 635.90 11.32 2.56E-01 8.91E-01 + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 666.33 99.60 4.17E-02 5.07E-01 695.00 99.60 2.12E-01 5.34E-01 720.50 53.80 1.15E-01 9.31E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01					49.00				4
427.89	+	I - 125	35.49						
463.38 10.35 4.82E-01 9.67E-01 600.56 17.80 1.93E-01 5.78E-01 635.90 11.32 2.56E-01 8.91E-01 + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 666.33 99.60 4.17E-02 5.07E-01 695.00 99.60 2.12E-01 5.34E-01 720.50 53.80 1.15E-01 9.31E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01	+	SB-125	176.33						
+ SB-126							•		
+ SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 666.33 99.60 4.17E-02 5.07E-01 695.00 99.60 2.12E-01 5.34E-01 720.50 53.80 1.15E-01 9.31E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01									
+ SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 666.33 99.60 4.17E-02 5.07E-01 695.00 99.60 2.12E-01 5.34E-01 720.50 53.80 1.15E-01 9.31E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01		•							
666.33 99.60 4.17E-02 5.07E-01 695.00 99.60 2.12E-01 5.34E-01 720.50 53.80 1.15E-01 9.31E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01	1	an 106							•
695.00 99.60 2.12E-01 5.34E-01 720.50 53.80 1.15E-01 9.31E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01	+	20-170							
720.50 53.80 1.15E-01 9.31E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01									
+ SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01									
+ SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01	+	SN-126		*					
0.07.01						3.77E+00	4.09E+01	5.25E+01	
000.20	•	 ·	685.20		35,70	1.67E+01		4.09E+01	
783.80 14.70 -2.24E+01 9.77E+01						-2.24E+01		9.77E±01	

1603102-04

	Nuclide Name	Energy (keV)	Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
	T 100	29.78	57.00	8.00E-02	5.18E-01	5.18E-01	
+	I-129		13.20	-1.60E-01	3,102 01	1.46E+00	
		33.60 39.58	7.52	-8.13E-01		1.63E+00	
+	I-131	284.30	6.05	-5.29E+00	1.17E+00	1.43E+01	
T	1 131	364.48	81.20	6.49E-01		1.17E+00	
		636.97	7.26	6.83E+00		1.52E+01	
		722.85	1.80	-4.44E+01	•	6.84E+01	
+	TE-132	49.72	13.10	-1.75E+01	3.20E+01	2.65E+02	
·		228.16	88.00	2.01E+00		3.20E+01	
+	BA-133	81.00	33.00	-8.00E-02	2.10E-01	2.14E-01	
•	2	302.84	17.80	7.59E-02		5.12E-01	
		356.01	60.00	3.17E-03		2.10E-01	
+	I-133	529.87	86.30	-1.38E+07	4.61E+08	4.61E+08	
+	XE-133	81.00	38.00	-2.72E+00	7.28E+00	7.28E+00	
+	CS-134	563.23	8.38	-2.60E-01	1.16E-01	1.05E+00	
T	C2-124	569.32	15.43	1.85E-01		6.49E-01	
		604.70	97.60	2.83E-02		7.16E-01	
		795.84	85.40	8.64E-02		1.41E-01	
		801.93	8.73	2.33E-02		1.14E+90	
+	CS-135	268.24	16.00	8.78E-02	5.43E-01	5,43E-01	
+	@ I-135	1131.51	22.50	1.00E+26	1.00E+26	1.00E+26	
•	@	1260.41	28.60	1.00E+26		1.00E+26	
	0	1678.03	9.54	1.00E+26		1.00E+26	
+	CS-136	153.22	7.46	3.19E+00	3.85E-01	3.79E+00	
,	55	163.89	4.61	-2.39E+00		5.64E+00	
		176.55	13.56	-2.21E+00		1.82E+00	
		273.65	12.66	1.39E-01		2.98E+00	
		340.57	48.50	1.39E-01		9.49E-01	
		818.50	99.70	4.69E-02		3.85E-01	
		1048.07	79.60	-1.77E-02		6.04E-01 3.21E+00	
		1235.34	19.70	2.49E-01 5.26E-03	1.29E-01	1.29E-01	
+	CS-137	661.65	85.12		1.83E-01	3.05E-01	
+	LA-138	788.74	34.00	2.75E-02	1.83E-01	1.83E-01	
		1435.80	66.00	2.41E-02	C 00E 02	9.09E-02	
+	CE-139	165.85	80.35	2.94E-02	9.09E-02		
+	BA-140	162.64	6.70	-4.79E-01	1.38E+00	4.07E+00	
		304.84	4.50	1.28E+00		8.24E+00 1.22E+01	
		423.70	3.20	5.16E+00		1.88E+01	
		437.55	2.00	7.27E-01 -5.59E-02		1.38E+00	
	T 7 1 4 0	537.32	25.00 20.50	1.28E+00	6.44E-91		
+	LA-140	328.77		2.88E-01	0.112 92	8.50E-01	
		487.03	45.50 23.50	-3.23E-02		1.65E+00	
		815.85 1596.49	95.49	1.70E-01		6.44E-01	
+	CE-141	145.44	48.40	7,22E-02	2.23E-01		
	CE-141 CE-143	57.36	11.80	-3.96E+05			
+	CE-142	293.26	42.00			3.74E+05	
		293.26 664.55	5.20	1.48E+06		2.64E+06	
L.	CE-144	133.54	10.80	-4.18E-01			
+	CD -144	100.04		-			

1603102-04

	Nuclide Name	Energy (keV)	Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
		()		· · · · · · · · · · · · · · · · · · ·			E-MANAGE.
+	PM-144	476.78	42.00	9.25E-02	8.87E-02	2.47E-01	
		618.01	98.60	-1.36E-02		8.87E-02	
		696.49	99.49	3.22E-02		1.21E-01	
4	PM-145	36.85	21.70	1.75E-01	3.54E-01	6.79E-01	
	-	37.36	39.70	-1.17E-01		3.54E-01	
		42.30	15.10	4,33E-02		7.19E-01	
		72.40	2.31	-1.02E+01		3.77E+00	
+	PM-146	453.90	39.94	5.37E-02	2.20E-01	2.20E-01	
		735.90	14.01	2.28E-01		7.52E-01	
		747.13	13.10	-9.13E-02		7.77E-01	
+	ND-147	91.11	28.90	-1.50E+00	1.58E+00	1.58E+00	
		531.02	13.10	-2.39E-01		3.58E+00	
+	PM-149	285.90	3.10	1.16E+03	1.59E+04	1.59E+04	
+	EU-152	121.78	20.50	1.78E-03	2.71E-01	2.71E-01	
		244.69	5.40	-5.56E-01		1,86E+00	
		344.27	19.13	-3.20E-02		4.47E-01	
		778.89	9.20	2.86E-01		1.11E+00	
		964.01	10.40	3.21E-02	9	1.12E+00	
		1085.78	7,22	-1.76E-01		1.75E+00	
		1112.02	9.60	-2.14E-02		1.19E+00	
		1407.95	14.94	3.29E-01	. 0.cm 0.1	8.79E-01	
+	GD-153	97.43	31.30	-3.15E-01	1.96E-01	1.96E-01	
		103.18	22.20	-1.79E-01	ግ ፈርሞ ሰብ	2.64E-01	
+	EU-154	123.07	40.50	6.62E-02	1.42E-01	1.42E-01	
		723.30	19.70	-3.72E-01		5.74E-01	
		873.19	11.50	-2.37E-01		7.71E-01 9.95E-01	
		996.32	10.30 17.90	-4.23E-02 2.22E-01		6.38E-01	
		1004.76 1274.45	35.50	-2.20E-01		3.81E-01	
+	EU-155	86.50	30.90	2.14E-01	2.64E-01	2.64E-01	
т	,EO 133	105.30	20.70	4.38E-02		2.77E-01	
+	EU-156	811.77	10.40	3.47E-01	2.97E+00	2.97E+00	
•	HO 100	1153.47	7.20	4.34E+00		7.34E+00	
		1230.71	8.90	1.95E+00		5.29E+00	
+	но-166М		72.60	1.59E-01	1.15E-01	1.15E-01	
		280.45	29.60	8.98E-02	•	2.81E-01	
		410.94	11.10	-2.96E-01		7.68E-01	
		711.69	54.10	-7.02E-02		1.73E-01	
+	TM-171	66.72	0.14	-5.44E+01	5.79E+01	5.79E+01	
+	HF-172	81.75	4.52	-2.75E-01	5.02E-01	1.54E+00	
		125.81	11.30	-1.92E-01		5.02E-01	
+	LU-172	181.53	20.60	2.61E+00	3.41E+00	5.80E+00	
		810.06	16.63	-2.43E+00		9.39E+00	
		912.12	15.25	4.00E+01		2.31E+01	
		1093.66	62.50	4.71E-02		3.41E+00	
+	LU-173	100.72	5.24	2.58E-01	4.39E-01	1.10E+00	
		272.11	21.20	1.205-01		4.39E-01	
+	HF-175	343.40	34.00	-9.54E-03			
+	LU-176	88.34	13.30	3.37E-01	8.58E-02	6.20E-01	

1603102-04

	Nuclide Name	Energy (ke [\] /)	٠	Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
	LU-176	201.83		86.00	-1.65E-02	8.58E-02	8.63E-02	
	10 170	306.78		94.00	5.12E-03		8.58E-02	
+	TA-182	67.75		41.20	-1.14E-01	2.21E-01	2.21E-01	
		1121.30		34.90	9.76E-01		6.54E-01	
		1189.05		16.23	1.15E-01		9.40E-01	
		1221.41		26.98	1.76E-01		6.23E-01 1.35E+00	
1	IR-192	1231.02 308.46		11.44 29.68	1.52E-01 4.76E-02	2.09E-01	3.47E-01	
+	IK-192	468.07		48.10	-4.30E-02	2,002	2.09E-01	
+	HG-203	279.19		77.30	4.62E-02	1.66E-01	1.66E-01	
+ .	BI-207	569.67	*	97.72	9.79E-02	9.20E-02	9.20E-02	
	B1 201	1063.62		74.90	-1.79E-02		1.53E-01	
+	TL-208	583.14	*	30.22	8.89E-01	5.65E-02	4.48E-01	
·	11	860.37		4.48	6.22E-01		2.59E+00	
		2614.66	*	35.85	9.82E-01		5.65E-02	
+	BI-210M	262.00		45.00	-1.46E-02	1.80E-01	1.80E-01	
		300.00		23.00	-1.84E+00		4.08E-01	
+	PB-210	46.50	*	4.25	3.32E+00	3.49E+00	3.49E+00	
÷	PB-211	404.34		2.90	2.47E-01	3.15E+00	3.15E+00	
		831.96		2.90	-5.18E-01		3.78E+00	•
+	BI-212	727.17		11.80	5.32E-01	1.08E+00	1.08E+00	
		1620.62		2.75	7,02E-01	2 425-01	3.18E+00 3.42E-01	
+	PB-212	238.63	*	44.60	1.22E+00	3.42E-01	2.29E+00	
	DT 014	300.09	*	3.41 46.30	1.51E+00 1.65E+00	1.01E-01	2.29E+00 2.37E-01	
+	BI-214	609.31	*	15.10	1.89E+00	1.0111 01	1.11E+00	
		1120.29 1764.49	*	15.10	1.82E+00		1.01E-01	
		2204.22		4.98	1.32E+00		2.92E+00	
+	PB-214	295.21	*	19,19	1.88E+00	3.36E-01	5.66E-01	
		351.92	*	37.19	1.85E+00		3.36E-01	
+	RN-219	401.80		6.50	2.20E-01	1.33E+00	1.33E+00	
+	RA-223	323.87		3.88	-3.20E-01	1.96E+00	1.96E+00	
+	RA-224	240.98		3.95	1.86E+01	3.95E+00	3,95E+00	
+	RA-225	40.00		31.00	-7.07E-01	1.42E+00	1.42E+00	
+	RA-226	186.21	*	3.28	3.18E+00	3.08E+00	3.08E+00	
+	TH-227	50.10		8.40	-7.30E-02	1.06E+00	1.11E+00	
		236.00		11.50	7.99E-01		1.06E+00	
		256.20		6.30	-5.04E-01		1.21E+00	
+	AC-228	338.32	*	11.40	1.10E+00	5.70E-01		
		911.07	*	27.70	1.50E+00		5.70E-01 9.25E-01	
	mr. 020	969.11	*	16.60 16.90	1.19E+00 9.66E-01	6.52E-01		
+	TH-230	48.4			3.66E-01 2.52E+00		1.88E+00	
		62.85 67.67		4.60 0.37	-1.07E+01		2.08E+01	
+	PA-231	283.67		1.60	-1.32E+00			
•	111 50A	302.67		2.30	5.84E-01		3.94E+00	
+	TH-231	25.64		14.70	-5.53E-01			
		84.21		6.40	1.39E-01		1.10E+00	

1603102-04

SEDIMENT 2016-03-16A

	Nuclide Name	Energy (keV)		Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
	PA-233	311.98		38.60	-9.53E-02	4.08E-01	4.08E-01	
+ +	PA-234	131.20		20.40	-9.99E~03	2.76E-01	2.76E-01	
7	FA-234	733.99 946.00		8.80 12.00	-6.03E-01 -4.91E-01		1.14E+00 9.11E-01	
+	PA-234M	1001.03		0.92	-2.39E+00	1.16E+01	1.16E+01	
+	TH-234	63.29		3.80	1.43E+00	2.24E+00	2.24E+00	
+	U-235	143.76		10.50	-1.53E-01	5.49E-01	5.49E-01	
		163.35 205.31		4.70 4.70	-5.42E-01 -1.89E+00	€	1.28E+00 1.52E+00	
+	NP-237	86.50		12.60	5.18E-01	6.40E-01	6.40E-01	
+	NP-239	106.10		22.70	-3.72E+00	8.92E+02	8.92E+02	
		228.18 277.60		10.70 14.10	1.60E+02 1.39E+03		2.54E+03 2.17E+03	
·F	AM-241	59.54		35.90	-1.88E-02	2.17E-01	2.17E-01	
+	AM-243	74.67	÷	66.00	4.11E-01	1.84E-01	1.84E-01	
+	CM-243	209.75		3.29	1.15E+00	6.15E-01	2.39E+00	
		228.14 277.60		10.60 14.00	4.54E-02 3.93E-01		7.21E-01 6.15E-01	

- + = Nuclide identified during the nuclide identification
- = Energy line found in the spectrum
- > = MDA value not calculated
- @ = Half-life too short to be able to perform the decay correction
- ? = CAUTION: MDA value is inconsistent with Currie MDA at 95% confidence level

NUCLIDE MDA REPORT

Nuclide Library Used : \\OR \GAMMA\\ApexRoot\Countroom\Library\TiMA2.NLB

	Nuclide Name	Energy (keV)	Yield(%)	Line MDA (pCi/grams)	Nuclide MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
+	BE-7 NA-22 NA-24	477.59 * 1274.54 1368.53 2754.09	10.42 99.94 99.99 99.86	1.56E+00 1.37E-01 2.93E+12 2.00E+12	1.56E+00 1.37E-01 2.00E+12	9.60E-01 -7.94E-02 8.90E+11 2.27E+11	7.43E-01 6.24E-02 1.31E+12 7.49E+11

Analysis Report for 1603102-04

	Nuclide Name	Energy (keV)		Yield(%)	Line MDA (pCi/grams)	Nuclide MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
	AL-26	1808.65		99.76	6.45E-02	6.45E-02	-3.59E-02	2.41E-02
+	K-40	1460.81 *		10.67	1.00E+00	1.00E+00	1.59E+01	4.36E-01
	AR-41	1293.64		99.16	1.00E+26	1.00E+26	1.00E+26	1.00E+20
C	TI-44	67.88		94.40	8.14E-02	8.14E-02	-4.20E-02	3.96E-02
	11 11	78.34		96.00	1.09E-01		2.59E-01	5.34E-02
	SC-46	889.25		99.98	1.29E-01	1.29E-01	-1.60E-02	5.86E-02
	00 10	1120.51		99.99	2.37E-01	\$ 1	2.84E-01	1.12E-01
	V-48	983.52		99.98	3.82E-01	3.82E-01	8.36E-02	1.74E-01
	1 40	1312.10		97.50	4.24E-01		2.10E-01	1.90E-01
	CR-51	320.08		9.83	1.60E+00	1.60E+00	4.70E-01	7.63E-01
	MN-54	834.83		99.97	1.17E-01	1.17E-01	3.89E-02	5.38E-02
	CO-56	846.75		99.96	1.42E-01	1.42E-01	4.31E-02	6.54E-02
4,	CO-36	1037.75		14.03	1.03E+00		-1.56E-01	4.69E-01
		1238.25		67.00	2.89E-01		1.93E-01	1.33E-01
		1771.40		15.51	3.57E-01		-1.08E+00	1.13E-01
		2598.48		16.90	4.15E-01		-2.07E-01	1.31E-01
	CO-57	122.06		35.51	6.96E-02	6.96E-02	4.57E-04	3.36E-02
	CO-37	136.48		10.60	6.18E-01		2.97E-01	2.98E-01
	CO-58	810.76		99.40	1.13E-01	1.13E-01	-1.17E-02	5.08E-02
	FE-59	1099.22		56.50	3.02E-01	3.02E-01	4.09E-02	1.36E-01
	FE-39	1291.56		43.20	4.57E-01	,	-1.56E-02	2.06E-01
	CO-60	1173.22		100.00	1.25E-01	1.25E-01	-7.30E-02	5.68E-02
	CO-00	1332.49		100.00	1.39E-01	= :	7.48E-05	6.30E-02
	DN CE	1115.52		50.75	2.39E-01	2.39E-01	-4,37E-03	1.08E-01
	ZN-65		k	35.70	1.18E+02	1.18E+02	6.87E+01	5.79E+01
+	GA-67	208.95		2.24	1.29E+03		8.15E+02	6.25E+02
			ŀ	16.00	1.79E+02		1.18E+02	8.54E+01
	CE 75	121.11		16.70	3.86E-01	1.19E-01	-7.79E-02	1.86E-01
	SE-75	136.00		59.20	1.19E-01		4.55E-02	5.75E-02
		264.65		59.80	1.57E-01		-2.92E-02	7.53E-02
		279.53		25.20	3.92E-01		1.28E-01	1.88E-01
		400.65		11.40	8.56E-01		4.84E-02	4.04E-01
	mn 00	776.52		13.00	1.74E+00	1.74E+00	-6.08E-02	8.02E-01
	RB-82	520.41		46.00	2.49E-01	2.49E-01	6.78E-02	1.17E-01
	RB-83	529.64		30.30	3.66E-01	G	-1.10E-02	1.71E-01
		552.65		16.40	6.57E-01		-2.41E-01	3.05E-01
	מאס פר	513.99		0.43	2.75E+01	2.75E+01	-7.31E-01	1.31E+01
	KR-85 SR-85	513.99		99.27	1.61E-01	1.61E-01	-4.28E-03	7.65E-02
		898.02		93.40	1.10E-01	1.10E-01	-2.81E-02	4.89E-02
	X-88	1836.01		99.38	1.27E-01	• • • • • • • • • • • • • • • • • • • •	2.91E-02	5.35E-02
	ND 02M	16.57		9.43	9.89E+01	9.89E+01	-6.38E+00	4.80E+01
	NB-93M	702.63		100.00	1.06E-01	8.94E-02	-6.79E-03	4.94E-02
	NB-94	871.10		100.00	8.94E-02	5.3.2 1-	-1.21E-02	4.02E-02
	NID OF	765.79		99.81	2.08E-01	2.08E-01	1.06E-01	9.69E-02
	NB-95	235.69		25.00	1.01E+02	1.01E+02	7.62E+01	4.92E+01
	NB-95M	724.18		43.70	3.72E-01	2.47E-01	1.56E-02	1.74E-01
	ZR-95			55.30	2.47E-01	211.2 04	1.00E-01	1.14E-01
	MO 00	756.72		6.20	1.13E+03	8.58E+02	2.94E+02	5.42E+02
	MO-99	181.06		12.80	8.58E+02	0.000,02	-1.38E+02	3.95E+02
		739.58			2.47E+03		-1.76E+02	1.14E(03
	Det 100	778.00		4.50	1.60E-01	1.60E-01	4.67E-02	7.50E-02
	RU-103	497.08		89.00 9.80	8.78E-01	8.73E-01	-1.22E-01	4.03E-01
	RU-106	621.84			9.06E-02	9.06E-02	-1.87£-02	4.26E-02
	AG-108M	433.93		89.90	5.00E-02	3.00L	2.072 02	

Analysis Report for 1603102-04

AG-108M 614.37 90.40 1.30E-01 9.06E-0 + CD-109 88.03 * 3.72 2.24E+00 2.24E+0 AG-110M 657.75 93.14 1.20E-01 1.20E-0 677.61 10.53 8.83E-01 706.67 16.46 6.49E-01 763.93 21.98 4.64E-01 884.67 71.63 1.48E-01 1384.27 23.94 4.70E-01 CD-113M 263.70 0.02 3.52E+02 3.52E+0 SN-113 255.12 1.93 4.63E+00 1.66E-01 TE123M 159.00 84.10 8.85E-02 8.85E-02 SB-124 602.71 97.87 1.44E-01 1.44E-01 645.85 7.26 1.70E+00 722.78 11.10 1.39E+00	A Activity Dec. Level s) (pCi/grams) (pCi/grams)
+ CD-109	
AG-110M 657.75 93.14 1.20E-01 1.20E-0 677.61 10.53 8.83E-01 706.67 16.46 6.49E-01 763.93 21.98 4.64E-01 884.67 71.63 1.48E-01 1384.27 23.94 4.70E-01 CD-113M 263.70 0.02 3.52E+02 3.52E+0 SN-113 255.12 1.93 4.63E+00 1.66E-01 TE123M 159.00 84.10 8.85E-02 8.85E-02 SB-124 602.71 97.87 1.44E-01 1.44E-01 645.85 7.26 1.70E+00	-8.05E-02 5.78E-02
677.61 10.53 8.83E-01 706.67 16.46 6.49E-01 763.93 21.98 4.64E-01 884.67 71.63 1.48E-01 1384.27 23.94 4.70E-01 CD-113M 263.70 0.02 3.52E+02 3.52E+0 SN-113 255.12 1.93 4.63E+00 1.66E-01 391.69 64.90 1.66E-01 TE123M 159.00 84.10 8.85E-02 8.85E-02 SB-124 602.71 97.87 1.44E-01 1.44E-01 645.85 7.26 1.70E+00	
706.67 16.46 6.49E-01 763.93 21.98 4.64E-01 884.67 71.63 1.48E-01 1384.27 23.94 4.70E-01 CD-113M 263.70 0.02 3.52E+02 3.52E+0 SN-113 255.12 1.93 4.63E+00 1.66E-01 391.69 64.90 1.66E-01 TE123M 159.00 84.10 8.85E-02 8.85E-03 SB-124 602.71 97.87 1.44E-01 1.44E-01 645.85 7.26 1.70E+00	
763.93 21.98 4.64E-01 884.67 71.63 1.48E-01 1384.27 23.94 4.70E-01 CD-113M 263.70 0.02 3.52E+02 3.52E+0 SN-113 255.12 1.93 4.63E+00 1.66E-01 391.69 64.90 1.66E-01 TE123M 159.00 84.10 8.85E-02 8.85E-02 SB-124 602.71 97.87 1.44E-01 1.44E-01 645.85 7.26 1.70E+00	3.43E-03 4.04E-01 -2.23E-01 3.00E-01
884.67 71.63 1.48E-01 1384.27 23.94 4.70E-01 CD-113M 263.70 0.02 3.52E+02 3.52E+ SN-113 255.12 1.93 4.63E+00 1.66E-01 391.69 64.90 1.66E-01 TE123M 159.00 84.10 8.85E-02 8.85E-02 SB-124 602.71 97.87 1.44E-01 1.44E-01 645.85 7.26 1.70E+00	-1.18E-01 2.12E-01
1384.27 23.94 4.70E-01 CD-113M 263.70 0.02 3.52E+02 3.52E+0 SN-113 255.12 1.93 4.63E+00 1.66E-01 391.69 64.90 1.66E-01 TE123M 159.00 84.10 8.85E-02 8.85E-02 SB-124 602.71 97.87 1.44E-01 1.44E-01 645.85 7.26 1.70E+00	1.48E-02 6.69E-02
CD-113M 263.70 0.02 3.52E+02 3.52E+0 SN-113 255.12 1.93 4.63E+00 1.66E-01 391.69 64.90 1.66E-01 TE123M 159.00 84.10 8.85E-02 8.85E-0 SB-124 602.71 97.87 1.44E-01 1.44E-01 645.85 7.26 1.70E+00	-2.44E-01 2.05E-01
SN-113 255.12 1.93 4.63E+00 1.66E-01 391.69 64.90 1.66E-01 TE123M 159.00 84.10 8.85E-02 8.85E-02 SB-124 602.71 97.87 1.44E-01 1.44E-01 645.85 7.26 1.70E+00	
391.69 64.90 1.66E-01 TE123M 159.00 84.10 8.85E-02 8.85E- SB-124 602.71 97.87 1.44E-01 1.44E- 645.85 7.26 1.70E+00	
TE123M 159.00 84.10 8.85E-02 8.85E-0 SB-124 602.71 97.87 1.44E-01 1.44E-0645.85 7.26 1.70E+00	8.31E-02 7.88E-02
SB-124 602.71 97.87 1.44E-01 1.44E-645.85 7.26 1.70E+00	
645.85 7.26 1.70E+00	
	-1.20E-01 7.85E-01
722.78 11.10 1.39E+00	-9.03E-01 6.49E-01
1691.02 49.00 2.40E-01	-6.93E-02 9.84E-02
T-125 35.49 6.49 3.51E+00 3.51E+	
SB-125 176.33 6.89 8.93E-01 2.94E-	
427.89 29.33 2.94E-01	5.28E-02 1.38E-01
463.38 10.35 9.67E-01	4.82E-01 4.58E-01
600.56 17.80 5.78E-01	1.93E-01 2.71E-01 2.56E-01 4.14E-01
635.90 11.32 8.91E-01	
SB-126 414.70 83.30 4.64E-01 4.64E-	4.17E-02 2.37E-01
666.33 99.60 5.07E-01 6.5.00 99.60 5.34E-01	2.12E-01 2.49E-01
	1.15E-01 4.32E-01
0.455	
+ SN-126 87.57 * 37.00 2.17E-01 2.17E- SB-127 473.00 25.00 5.25E+01 4.09E+	· -
685.20 35.70 4.09E+01	1.67E+01 1.89E+01
783.80 14.70 9.77E+01	-2.24E+01 4.47E+01
I-129 29.78 57.00 5.18E-01 5.18E-	
33.60 13.20 1.46E+00	-1.60E-01 7.04E-01
39.58 7.52 1.63E+00	-8.13E-01 7.87E-01
I-131 284.30 6.05 1.43E+01 1.17E+	
364.48 81.20 1.17E+00	6.49E-01 5.56E-01
636.97 7.26 1.52E+01	6.83E+00 7.08E+00 -4.44E+01 3.19E+01
722.89 1.80 6.84E+01	• • • • •
TE-132 49.72 13.10 2.65E+02 3.20E+	01 -1.75E+01 1.28E+02 2.01E+00 1.54E+01
228.16 88.00 3.20E+01 BA=133 81.00 33.00 2.14E-01 2.10E-	
DA 133	$7.59E-02 \qquad 2.46E-01$
**************************************	3.17E-03 1.01E-01
4 (17)	
1 100	
XE-133 81.00 38.00 7.28E+00 7.28E+ CS-134 563.23 8.38 1.05E+00 1.16E-	
569.32 15.43 6.49E-01	1.85E-01 3.04E-01
604.70 97.60 1.16E-01	2.83E-02 5.43E-02
795.84 85.40 1.41E-01	8.64E-02 6.55E-02
801.93 8.73 1.14E+00	2.33E-02 5.22E-01
CS-135 268.24 16.00 5.43E-01 5.43E-	
@ I-135 1131.51 22.50 1.00E+26 1.00E	
e 1260.4 28.60 1.00E+26	-26 1.00E+26 1.00E+20 1.00E+26 1.00E+20

Analysis Report for 1603102-04

	SEDIMENT 2016-03-1	6A				
Nuclide	Energy	Yield(%)	Line MDA	Nuclide MDA	Activity	Dec. Level
Name	(keV)		(pCi/grams)	(pCi/grams)	(pCi/grams)	(pCi/grams)
@ I-135	1678.03	9.54	1.00E+26	1.00E+26	1.00E+26	1.00E+20
CS-136	153.22	7.46	3.79E+00	3.85E-01	3.19E+00	1.83E+00
	163.85	4.61	5.64E+00	, ÷	-2.39E+00	2.71E+00
	176.55	13.56	1.82E+00		-2.21E+00	8.74E-01
	273.65	12.66	2.98E+00		1.39E-01	1.43E+00
•	340.57	48.50	9.49E-01		1.39E-01	4.57E-01
	818.50	99.70	3.85E-01		4.69E-02	1.74E-01
	1048.07	79.60	6.04E-01		-1.77E-02	2.74E-01
	1235.34	19.70	3.21E+00		2.49E-01	1.47E+00
CS-137	661.65	85.12	1.29E-01	1.29E-01	5.26E-03	6.05E-02 1.40E-01
LA-138	788.74	34.00	3.05E-01	1.83E-01	2.75E-02	8.12E-02
	1435.80	66.00	1.83E-01	0 0.310 0.0	2.41型-02 2.94周-02	4.38E-02
CE-139	165.85	80.35	9.09E-02	9.09E-02	-4.79E-01	1.96E+00
BA-140	162.64	6.70	4.07E+00	1.38E+00	1.28E+00	3.94E+00
	304.84	4.50	8.24E+00		5.16E+00	5.74E+00
	423.70	3.20	1.22E+01 1.88E+01		7.27E-01	8.84E+00
	437.55	2.00 25.00	1.38E+00		-5.59E-02	6.36E-01
T 7 1 4 0	537.32	20.50	1.92E+00	6.44E-01	1.28E+00	9.18E-01
LA-140	328.77 487.03	45.50	8.50E-01	0.112 01	2.88E-01	3.98E-01
	815.85	23.50	1.65E+00		-3.23E-02	7.43E-01
	1596.49	95.49	6.44E-01		1.70E-01	2.87E-01
CE-141	145.44	48.40	2.23E-01	2.23E-01	7.22E-02	1.07E-01
CE-143	57.36	11.80	7.75E+05	3.74E+05	-3.96E+05	3.76E+05
05 110	293 26	42.00	3.74E+05		2.84E+04	1.82E+05
	664.5~	5.20	2.64E+06		1.48E+06	1.24E+06
CE-144	133.54	10.80	5.49E-01	5.49E-01	-4.18E-01	2.64E-01
PM-144	476.78	42.00	2.47E-01	8.87E-02	9.25E-02	1.17E-01
	618.01	98.60	8.87E-02		-1.36E-02	4.08E-02
	696.49	99.49	1.21E-01		3.22E-02	5.66E-02
PM-145	36.85	21.70	6.79E-01	3.54E-01	1.75E-01	3.28E-01 1.71E-01
	37.36	39.70	3.54E-01		-1.17E-01	3.48E-01
	42.30	15.10	7.19E-01	:	4.33E-02 -1.02E+01	1.84E+00
_	72.40	2.31	3.77E+00	2.20E-01	5.37E-02	1.04E-01
PM-146	453.90	39.94	2.20E-01	Z.ZUE-UI	2.28E-01	3.48E-01
	735.90	14.01	7.52E-01 7.77E-01		-9.13E-02	3.58E-01
: 3773	747.13	13.10 28.90	1.58E+00	1.58E+00	-1.50E+00	7.72E-01
ND-147	91.11 531.02	13.10	3.58E+00	1,000.00	-2.39E-01	1.66E+00
DM 140	285.90	3.10	1.59E+04	1.59E+04	1.16E+03	7.61E+03
PM-149 EU-152	121.78	20.50	2.71E-01	2.71E-01	1.78E-03	1.31E-01
F0-125	244.69	5.40	1.86E+00	27.12.	-5.56E-01	9.01E-01
	344.27	19.13	4.47E-01		-3.20E-02	2.13E-01
	778.89	9.20	1.11E+00		2.86E-01	5.09E-01
	964.01	10.40	1.12E+00		3.21E-02	5.15E-01
	1085.78	7.22	1.75E+00		-1.76E-01	7.99E-01
	1112.02	9.60	1.19E+00		-2.14E-02	5.36E-01
	1407.95	14.94	8.79E-01		3.29E-01	3.95E-01
GD-153	97.43	31.30	1.96E-01	1.96E-01	-3.15E-01	9.46E-02
	103.10	22.20	2.64E-01	÷	-1.79E-01	1.27E-01
EU-154	123.07	40.50	1.42E-01	1.42E-01	6.62E-02	6.84E-02
	723.30	19.70	5.74E-01		-3.72E-01	2.67E-01
	873.19	11.50	7.71E-01		-2.37E-01	3.46E-01

	Nuclide Name	Energy (keV)	Yield(%)	Line MDA (pCi/grams)	Nuclide MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
	EU-154	996.32	10.30	9.95E-01	1.42E-01	-4.23E-02	4.48E-01
	20 20.	1004.76	17.90	6.38E-01	No. 1	2.22E-01	2.91E-01
		1274.45	35.50	3.81E-01	,	-2.20E-01	1.73E-01
	EU-155	86.50	30.90	2.64E-01	2.64E-01	2.14E-01	1.29E-01
	-	105.30	20.70	2.77E-01		4.38E-02	1.34E-01
	EU-156	811.77	10.40	2.97E+00	2.97E+00	3.47E-01	1.34E+00
		1153.47	7.20	7.34E+00		4.34E+00	3.39E+00
		1230.71	8.90	5.29E+00		1.95E+00	2.41E+00
	HO-166M	184.41	72.60	1.15E-01	1.15E-01	1.59E-01	5.59E-02
		280.15	29.60	2.81E-01		8.98E-02	1.35E-01 3.63E-01
		410.94	11.10	7.68E-01	,	-2.96E-01	7.97E-02
		711.69	54.10	1.73E-01	5 50D 101	-7.02E-02	2.82E+01
	TM-171	66.72	0.14	5.79E+01	5.79E+01	-5.44E+01	7.49E-01
	HF-172	81.75	4.52	1.54E+00	5.02E-01	-2.75E-01 -1.92E-01	2.42E-01
		125.81	11.30	5.02E-01	2 (15:00	2.61E+00	2.80E+00
	LU-172	181.53	20.60	5.80E+00	3.41E+00	-2.43E+00	4.24E+00
		810.06	16.63	9.39E+00		4.00E+01	1.10E+01
		912.12	15.25	2.31E+01		4.71E-02	1.55E+00
		1093.66	62.50	3.41E+00 1.10E+00	4.39E-01	2.58E-01	5.29E-01
	LU-173	100.72	5.24	4.39E-01	4.596-01	1.20E-01	2.12E-01
	455	272.11	21.20	1.34E-01	1.34E-01	-9.54E-03	6.41E-02
	HF-175	343.40	84.00	6.20E-01	8.58E-02	3.37E-01	3.03E-01
	LU-176	88.34	13.30 86.00	8.63E-01	0.500 02	-1.65E-02	4.16E-02
		201.83	94.00	8.58E-02		5.12E-03	4.09E-02
	m» 100	306.78	41.20	2.21E-01	2,21E-01	-1.14E-01	1.07E-01
	TA-182	67.75 1121.30	34.90	6.54E-01	21222 42	9.76E-01	3.08E-01
		1189.05	16.23	9.40E-01		1.15E-01	4.27E-01
		1221.41	26.98	6.23E-01		1.76E-01	2.85E-01
		1231.02	11.44	1.35E+00		1.52E-01	6.15E-01
	IR-192	308.46	29.68	3.47E-01	2.09E-01	4.76E-02	1.66E-01
	TV 1 2 2	463.07	48.10	2.09E-01		-4.30E-02	9.74E-02
	HG-203	279.19	77.30	1.66E-01	1.66E-01	4.62E-02	7.96E-02
+	BI-207	569.67		9.20E-02	9.20E-02	9.79E-02	4.28E-02
'	D1 207	1063.62	74.90	1.53E-01		-1.79E-02	6.93E-02
+	TL-208	583.14		4.48E-01	5.65E-02	8.89E-01	2.13E-01
•	11, 200	860.37	4.48	2.59E+00		6.22E-01	1.20E+00
		2614.66		5.65E-02	•	9.82E-01	0.00E+00
	BI-210M	262.00	45.00	1.80E-01	1.80E-01	-1.46E-02	8.65E-02
	D	300.00	23.00	4.08E-01		-1.84E+00	1.96E-01
+	PB-210		4.25	3.49E+00	3.49E+00	3.32E+00	1.71E+00
	PB-211	404.84	2.90	3.15E+00	3.15E+00	2.47E-01	1.50E+00
		831.96	2.90	3.78E+00		-5.18E-01	1.74E+00
	BI-212	727.17	11.80	1.08E+00	1.08E+00	5.32L-01	5.05E-01
		1620.62	2.75	3.18E+00		7.02E-01	1.32E+00
+	PB-212	238.63	* 44.60	3.42E-01	3.42E-01	1.22E+00	1.68E-01
		300.03	* 3.41	2.29E+00	4 64- 65	1.51E+00	1.09E+00
+	BI-214	000.01	* 46.30	2.37E-01	1.0:E-01	1.65E+00	1.11E-01 5.17E-01
		1120.23	* 15.10	1.11E+00		1.89E+00	0.00E+00
		T/04.47	* 15.80			1.82E+00	1.27E+00
		2204.22	4.98		1 1 CF 01	1.32E+00 1.88E+00	2.74E-01
+	PB-214	2,0,21	* 19.19 * 37.19		3.36E-01	1.88E+00 1.85E+00	1.63E-01

1603102-04

SEDIMENT 2016-03-16A

	Nuclide Name	Energy (keV)	Yield(%)	Line MDA (pCi/grams)	Nuclide MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
	RN-219	401.80	6.50	1.33E+00	1.33E+00	2.20E-01	6.29E-01
	RA-223	323.87	3.88	1.96E+00	1.96E+00	-3.20E-01	9.28E-01
	RA-224	240.98	3.95	3.95E+00	3.95E+00	1.86E+01	1.94E+00
	RA-225	40.00	31.00	1.42E+00	1.42E+00	-7.07E-01	6.84E-01
4	RA-226	186.21 *	3.28	3.08E+00	3.08E+00	3.18E+00	1.50E+00
·	TH-227	50.10	. 8.40	1.11E+00	1.062+00	-7.30E-02	5.37E-01
		236.00	11.50	1.06E+00		7.99E-01	5.16E-01
		256.20	6.30	1.21E+00		-5.04E-01	5.79E-01
+	AC-228	338.32 *	11.40	8.04E-01	5.70E-01	1,10E+00	3.85E-01
	110 220	911.07 *	27.70	5.70E-01		1.50E+00	2.68E-01
		969.11 *	16.60	9.25E-01		1.19E+00	4.33E-01
	TH-230	48.44	16.90	6.52E-01	6.52E-01	9.66E-01	3.18E-01
	##I 230	62.85	4.60	1.88E+00		2.52E+00	9.16E-01
		67.67	0.37	2.08E+01		-1.07E+01	1.01E+01
	PA-231	283.67	1.60	4.93E+00	3.94E+00	-1.82E+00	2.36E+00
	111 601	302.67	2.30	3.94E+00		5.84E-01	1.89E+00
	TH-231	25.64	14.70	3.84E+00	1.19E+00	-5.53E-01	1.86E+00
	111 201	84.21	6.40	1.10E+00		1.39E-01	5.34E-01
	PA-233	311.98	38.60	4.08E-01	4.08E-01	-9.53E-02	1.94E-01
	PA-234	131.20	20.40	2.76E-01	2.76E-01	-9.99E-03	1.33E-01
	IN 254	733.99	8.80	1.14E+00	•	-6.03E-01	5.26E-01
		946.00	12.00	9.11E-01		-4.91E-01	4.15E-01
	PA-234M	1001.03	0.92	1.16E+01	1.16E+01	-2.39E+00	5.27E+00
	TH-234	63.29	3.80	2.24E+00	2.24E+00	1.43E+00	1.09E+00
	:U-235	143.76	10.50	5.49E-01	5.49E-01	-1.53E-01	2.65E-01
	0 200	163.35	4.70	1.28E+00		-5.42E-01	6.15E-01
		265.31	4.70	1.52E+00		-1.89E+00	7.32E-01
	NP-237	86.50	12.60	6.40E-01	6.40E-01	5.18E-01	3.13E-01
	NP-239	106.10	22.70	8.92E+02	8.92E+02	-3.72E+00	4.31E+02
	141 233	228.13	10.70	2.54E+03	•	1.60E+02	1.22E+03
		277.60	14.10	2.17E+03		1.39E+03	1.04E+03
	AM-241	59.54	35.90	2.17E-01	2.17E-01	-1.88E-02	1.06E-01
+	AM-243	74.67 *	· ·	1.84E-01	1.84E-01	4.11E-01	9.08E-02
'	CM-243	209.75	3.29	2.39E+00	6.15E-01	1.15E+00	1.15E+00
	OF 240	228.14	10.60	7.21E-01		4.54E-02	3.47E-01
		277.60	14.00	6.15E-01		3.93E-01	2.96E-01

 ⁼ Nuclide identified during the nuclide identification

No Action Level results available for reporting purposes.

^{* =} Energy line found in the spectrum

> = MDA value not calculated

^{@ =} Half-life too short to be able to perform the decay correction

1603102-04

SEDIMENT 2016-03-16A

DATA REVIEW COMMENTS REPORT

Creation Date

Comment

User

No Data Review Comments Entered.

Sample Title: SEDIMENT 2016-03-16A

Elapsed Live time: 3600 Elapsed Real Time: 3613 3600

			,			1	,	1
Channel		·		-	0	0	0	0
1:	0 1	0 155	0 149	0 118	94	109	73	98
9: 17:	$7\overset{\perp}{1}$	79	67	60	62	66	69	55
	71	62	61	67	63	57	54	55
25: 33:	54	64	50	. 59	61	53	55	43
33: 41:	65	58	64	47	52	71	171	131
49:	59	58	67	64	72	80	65	69
57:	48	71	77	80	88	82	105	156
65:	106	76	93	98	112	89	103	86
73;	81	115	259	283	298	407	127	79
81:	80	81	80	96	116	80	115	184
89:	111	106	120	87	161	173	89	62
97:	62	55	53	59	59	51	53	49
105:	49	74	60	54	54	68	57	49
113:	62	50	45	66	42	59	44	46
121:	51	56	49	47	60	37	54	42
129:	53	56	49	41	43	47	52	47
137;	51	70	55	48	5 C	44	46	44
145:	59	39	56	. 47	42	45	60	50
153:	43	55	73	38	46	65	44	46
161:	50	42	37	37	55	46	4.7	54
169:	44	47	37	39	50	49	38	40
177:	38	33	28	47	57 20	48	33	55 40
185:	58	103	117	48	38 42	42 43	47 45	45
193:	40	59	44	33 32	32	36	34	29
201:	34	28	35 36	32 36	32 32	30	33	38
209:	38	61 48	30 43	33	32 37	36	30	31
217:	38 35	30	31	33	20	33	38	36
225: 233:	26	28	36	39	37	75	305	188
241:	63	119	89	38	31	24	24	19
249;	35	24	26	27	25	20	20	26
257:	35	27	28	32	33	30	25	27
265:	24	24	32	28	35	40	38	40
273:	27	$\overline{21}$	29	27	33	39	23	27
281:	26	21	23	28	16	23	27	28
289:	28	19	30	17	18	29	133	189
297:	60	16	13	39	39	23	24	20
305:	27	24	17	23	24	1.5	20	21
313:	18	15	20	26	17	23	17	21
321:	16	10	28	12	11	26	17	25
329:	33	21	21	14	22	18	15	13
337:	15	43	69	23	22	2.2	18	26
345:	20	9	20	16	21	18	55 10	224
353:	167	45	16	14	13	15	19 19	14 20
361:	21	18	16	19	14	22	19	20

369: 10 12 14 17 21 14 14 14

Sample Title: SEDIMENT 2016-03-16A

•	Dampic	110101	0,22112					
Channel	-			1 20	 16	16	 18	12
377 :	21 18	14 14	21 16	19	21	16	16	23
385:		18	12	11	12	5	11	12
393:	19		16	14	13	19	18	14
401:	16	25	10 11	12	15	12	14	18
409:	21	15	17	13	12	15	15	16
417:	10	9	10	8	8	19	17	13
425:	15 12	14 12	9	6	13	10	22	12
433: 441:	12	18	10	9	. 6	6	10	10
441:	3 T.2	17	9	- 9	16	15	13	13
457:	13 3 12	13	10	15	9	$\overline{15}$	26	26
465:	8	9		15	5	10	8	19
473:	8 9	13	9 8	16	22	18	16	10
481:	12	9	8		14	13	12	8
489:	8	10	11	9 6	5	13	11	8
497:	13	11	10	8	10	12	10	4
505:	10	12	12	10	14	25	49	33
513:	14	7	. 8	9	13	13	8	13
521:	10	8	10	, 6 5	17	9 5	17	12
529:	9	13	4	5	8 9 8	5	8	4
537 :	12	6	6	7	. 6	9	7	7 6
545:	9	7	13	9	8	8	6 9	7
553:	14	8	10	7	11	1.3	4	12
561:	6	6	12	9	12	4 5	" 1 7	13
569:	19	15 6	10 12	6	و 8	14	68	74
577 :	8 10	8	5	9	10	3		7
585: 593:	12	8	11	4	9	12		7
601:	13	13	11	10	12	7	9	
609:	141	142	45	6	8	12	9	7
617:	7	8	7	5	8 1	4		9
625:		10	7	4	7	3.0	6	
633:	9 8		7	7	14	6	10	
641:	2 6	9 6	12	4	4	ნ 8	6	10
649:	6	10	9	7	4 5	8	10	7
657 :	12	12	6	6	10	15	16	7
665:	11	1.3	3	12	4	11 8	3	4
665: 673:	3	9	8	6 12 3 7	6	8	. 8	
681:	4	13 9 5 5 7	6 3 8 2 8 9	7	4 6 5 10 11 2 5	9		11
689: 697:	9	5	8	7	10	1.0	16 10	1.1
697:	9	5	9	7	T.T	9 6	; 6	
705:	/	3	11	9	<u>ک</u> 5	8	9	9
713:	5	11	11	3	7	។ 1 ន	19	14
721:	ď	11	8 9	6			4	3
729: 737:	11 3 4 9 7 5 6 9 8	7.0	9 10	<i>A</i>	<u>፲</u> ሀ	18 7 7 9	11	7
737: 745:	<i>Σ</i> Ω	ے ح	8	4	6.	; c	5	7
753:	4	8	8	6	8	4	. 6	6
761:	5	3	8	9	3	7	' 4	15
769:	19	10 9 5 8 3 8 6	10 8 8 8 10	5	12	. 7	' 6	8
777:	19 6	6	4	7	7	6	3	5
785:	4	6	8	984644695789	10 5 € 8 3 12 7 7 5	9 5	3 7	9 14 3 7 7 6 15 8 8 5 6 5
793:	4	12	1.7	9	5		5 6	5 5

Channel	Data Repor	ct	4	/13/2016	9:08:	06 AM		Page	3
801:	3	7	6	3	8	6	l ₄	5	
	Sample T	itle:	SEDIMENT	2016-03-	16A				
Channel 809: 817: 825: 833: 841: 849: 857:	1 4 4 5 2 6	8 7 8 8 8 10 5	3 2 4 4 2 3 5	7 8 7 6 6	 5 2 11 9 11 5	2 3 5 6 6	5 6 6 7 5 3	- - 2 5 7 3 6 6	
865: 873: 881: 889: 897: 905: 913: 921:	, 6 3 5 4 3 5 4 9	6 4 8 5 3 6 4	5 6 7 6 7 4	3 1 8 6 2 4 8	5 5 5 3 1 7 4 3	3 6 3 6 3 2 4 1 8	3 5 2 2 5 51 4 4	6 7 5 4 9 40 4 3	
929: 937: 945: 953: 961: 969:	4 3 3 6 5 41	4 6 7 5 3 16	7 3 3 5 7 11	7 6 3 6 9 5	11 5 8 6 6 4	12 6 9 10 6 5	7 6 9 3 4 6	5 6 4 8 13 5	
977: 985: 993: 1001: 1009: 1017: 1025:	5 5 2 3 4 5 8	3 6 5 3 3	4 7 2 8 4 7 8	5 3 5 5 10 6 3	3 4 5 7 3 7	6 4 5 1 2	7 2 3 6	3 4 5 3 6 4	
1033: 1041: 1049: 1057: 1065: 1073:	4 6 8 7 5 2 5	5 4 2 4 5 9 5 7	6 8 4 5 3 6	3 3 6 5 3 3 2	4 5 1 7 6	7 9 4 4 3 2	3 0 1 3 6 3 6	4 3 1 5 6 7	
1081: 1089: 1097: 1105:	7 7 2 19	3 6 6 4	6 6 4 5 3 6 1	5 3 2 4 3 2 2 7 6	1 6 2 4 5 2 6 5 3 4	7 3 7 6 2	4 10 4 17 3	5 4 2 32 5 4	
1121: 1129: 1137: 1145: 1153: 1161: 1169: 1177:	2 2 3 6 2 10	4 4 13 12 2	10 4 9 7	6 5 4 6 2 4 1	7 6	1 3 5 5 3 8 7	4 3 6 0 5 4 5 3 5 1	3 4 4 6 7 5 6	
1177: 1185: 1193: 1201: 1209: 1217: 1225:	10 5 5 2 9 4 11 4	1 4 3 6 5	3 4 5 7 3 6 7	4 8 1 5 3	4 3 5 5 6 6 3	9 2 6 5 6 3	3 5 1 2 6 7	9 4 6 1 8 7	

Channel	Data Repor	t	4,	/13/2016	9:08:0	06 AM		Page	4
1233:	3	6	1	4	8	13	9	5	
	Sample Ti	tle:	SEDIMENT	2016-03-	16A				
Channel							 [
1241:	5 ່	4	0 '	4	5	3	1	1	
1249:	5	5	4	4	7	3	4	3 2 5	
1257:	4	3	6	2	5	2	4 4	<u>ک</u> ج	
1265:	3	6	2 2	3 8	2 2	4 4	6	10	
1273: 1281:	2 4	2 4	7	10	2	3	3	3	
1289:	5	3	1	5 .	3	Ö	6	4	
1297:	4	2	3	5	3	3	8	4	
1305:	i	2		2	3	6	1	2	
1313:	3	5	_2	2	1	1	1	2 3 5	
1321:	4	1	2 2 5 5	2	<u>C</u>	2	2	5	
1329:	3	2		7	5	2	2 3	0	
1337:	7	2 1.	2 1	3 5	3 0	2 3	4	0	
1345: 1353:	2	1.	1	0	5	3	3	ĭ	
1361:	4	3	ī	3	$\tilde{2}$	5	2	2	
1369:	2	Ō	5	2	1	2	2	2 3	
1377:	7	4	3	1	1	3	0		
1385:	2	1	2	3	3	2	0	1	
1393:	1	2 2	0 1	1 3	0 0	2 4	2 5	6	
1401: 1409:	6 1	2	5	0	2	2	5	2	
1417:	0	ī	4	Ŏ	2	3	2	-0	
1425:	3	3	1	4	4	1	1	1	
1433:	1	4	3	7	1	1	2	0	
1441:	.3	3	2	2	3 2	1 1	0	.1	
1449:	1 3	<u>?</u> 6	4 40	1. 143	111	33	1	1	
1457: 1465:	. 1	0	0	1	C	4	3	0	
1473:	3	2	2	2	2	7	2	2	
1481:		3 2		1 1	1 1.	0	1	3	
1489:	2	2	6 3 2	1].	1	4	1	
1497:	2 2 2 3 2	4 1	2	0 3	1 4	1 5	1 1	3 1 1 3	
1505: 1513:	ა 2	1	2	3		5 1 3 1	ī	Ö	
1521:	- 2	1 2 3	2 1	3 2 5	1 3 1	3	1	1	
1521: 1529: 1537:	7	3	0	5	1	1	1 2 3	0	
1537:	6	0	3	2	0	1	0	3 2	
1545:	0	2	0 0	0 0	4	0 2	0	1	
1553: 1561:	3 0	1 1	Û	1	2 2 2 2 2 2	1		Ō	
1569:	Ö	2	Ö	ĩ	2	Ō	3 1	1	
1577:	ĺ	1	0	1 3	2	0	1 6 3 3	1 3	
1585:	0	4	2 2	3	2	1	6	3	
1593:	5	5	2	1		2	್ತ ಇ	0 1	
1601:	2 0	0 2	1 1	C 1	0 0	4 1	0	0	
1609: 1617:	0	0	2	1 3	0	2		Ő	
1625:	ŏ	ĭ	1	0	3	4	1 3	0	
1633:	2	1	0	1	1	3	1	0	
1641:	0	0	0	0	1	0	2	1 2	
1649:	1	0	0	1 2	0 0	1 0	1 1	1	
1657:	0	2	4	۷	U	U	1	Т	

Channel	Data Rep	ort	4	/13/2016	9:08:	06 AM		Page	5
1665:	0	1	2	1.	0	2.	1	0	
	Sample	Title:	SEDIMENT	2016-03-	16A				
Channel 1673:	- 2	0	I 0	· 2		 2	0	 4	
1681: 1689:	0 1	3 1	1 0	0 1	2	0 1	0 0	0	
1697: 1705:	1 0	1 2	0 0	1 C	0 0	2 1	1. 1.	1 0	
1713:	0	2	0	1	Ö	1	0	0	
1721: 1729:	0 8	3 3	0 1	0 1	1 1.	4 1	0 0	6 0	
1737:	1	1	0	0	ī	0	1	1	
1745: 1753:	0 1	2 0	2	0 0	2 1	0 0	0 0	0 2	
1761:	0	4	11	18	11.	3	0	0	
1769: 1777:	0 0	0 0	0 0	0 3	1 1	0 1	0 2	0	
1785:	0	0	0	0	0	0	2 1	0	
1793: 1801:	1 2	1 0	0 1	0 0	0	1	0	0	
1809:	1	0	0	1	1	1. O	1 0	0	
1817: 1825:	0 0	1 0	1 0	0 1	0 0	1	1	Ŏ	
1833:	4	1	1 0	1 0	1 0	1 3	0 3	3 1	
1341: 1849:	2	1 0	2	1	0	1	1	1	
1857;	2	1	ŋ	2 1	<u>1</u> 1.	1 1	2 0	0	
1865: 1873:	1 0	Û	0	2	0	Ű	0	0	
1881: 1889:	1 3	1	1 0	1. O	0 1	0 1	0 2	0	
1897:	2	1	Ö	Õ	0	1	4	0	
1905: 1913:	0 0	1 0	1	1 0	2 0	0 0	0 1	0	
1921:	1	3 2	3 1	1	2	0	<u>1</u> 1	0 1	
1929: 1937:	1 0	2 0	0 0	1 0	1 2	0 0	1 1 1 1 3	0	
1945:	2	0	0	0	0	1 3	1 ว	1 4	
1953: 1961:	0 1	0 1	3 2	0 0	1 1	0		1	
1969:	. 0	1 1	0	1 3	0 2	0 0	0 2 2	1 3 0	
1977: 1985:	0	0 3 0	.3	0	0	0	2	1 0	
1993:	2 0	0 1	1 0	0 0	1 0	1 3 1	0 0	0	
2001: 2009:	0	1	0	ĭ	0		1	1	
2017: 2025:	1 0	0	1 1	1 2	2 0	1 1	0 0	1	
2033:	0	0 2 1 0 1 1	0	1 1 2 0 1	0	2	2	3	
2041: 2049:	1 0	9	1 0	0	2 0	2 1 0	1	0	
2057:	2 1	1	0	1 1	1	0 1	0	0	
2065: 2073:	0	1 0	.2 1 ·	<u>).</u> 1	0 0	0	1 1 2	0	
2081:	2 2	0	Û	1 1 0	1 0	0 1	2 0	0 2	
2089:	2	0	0	U	U	Т	U	۷	

Channel	Data Re	port	4	/13/2016	9:08:	06 AM		Page
2097:	1	Ö	0	2	0	3	2	1
• ,	Sample	Title:	SEDIMENT	2016-03-	-16A			
Chanel 2105: 212129: 2121297: 2121297: 2121297: 2121297: 212129753: 212129757	12010110010200000000100000030202010100001011110000101	121012201030200001002000010010200011111000001000	211111000100613000212109010111110000003111111000001111	03210101105000011001100110031200000202010101111	1001420001031011001001002011200121020200311000020110000	02000012011120011000000111100000022021000000	010200001010000201000200001021000110340000011000	121000102001011000000012111001110011001

Channel	Data Repor	ct	4	/13/2016	9:08:	MA 60		Page	7
2529 :	0	1	0	0	C	1	0	0	
	Sample Ti	itle:	SEDIMENT	2016-03-	16A				
Channel 2537: 2561: 25561: 25569: 25609: 26617: 256649: 26625: 2666575: 2666575: 2666575: 2666575: 2666575: 2666575: 2666575: 2774551: 277451: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 277451: 277451: 277451: 277451: 277451: 277451: 277451: 277451: 277451: 277451: 277451: 277451: 277451: 277451		00001000001010101111201000000100000000	000000000000000000000000000000000000000	010100100500010000110000000000000000000	100001100000000000000000000000000000000	0001110008010010 1000000000000000000000	011010000000000000000000000000000000000	000001012100100001000100000000000000000	

Channel	Data	Report	•		4/13/201	6 9:0	8:06 AM		Page	8
2961:		1	2	0	0	0	0	C	0	
	Samp	ple Tit	le:	SEDIMEN	NT 2016-9	3-16A				
Channel 2969: 2977: 2985: 29973: 3009: 3017: 3025: 3033: 3049: 30575: 3049: 30575: 3089: 30897: 3145: 3145: 3145: 3145: 3145: 3145: 3129: 3145: 3129: 3145: 3129: 3145: 3129: 3145: 3129: 3145: 3129:		1001010001002000000000000000001100001000000	120000100000001020001101000002000000000	000101001000001000010000000000000000000	110000000000000000000000000000000000000	000010001000000011000000000000000000000	010000000000000000000000000000000000000	000000001000000011000000000000000000000		

Channel	Data Repor	·t	4 /	13/2016	9:08:0	06 AM		Page
3393:	0	0	0.	0	0	0	0	0
	Sample Ti	tle:	SEDIMENT	2016-03-	16A			
Channel							<u>!</u>	
3401:	0	0	0	0 0	0 0	0 0	0	0 0
3409: 3417:	0 0	0 0	0 0	0	0	Ő	Ö	ĭ
3425:	ĭ	Ö	ő	Ö	1	1	0	0
3433:	0	0	0	0	0	0	0	0
3441:	0	0	0	0 0	0 0	0 0	0 0	1 0
3449. 3457:	0	0 0	1 0	0	0	0	1	Ŏ
3465:	ŏ	ĺ	Ő	Ö	0	0	0	1
3473:	0	0	0	0	C	0	0 1	0
3481:	0	0 0	0	0 + 0	0 0	0 1	0	0
3489: 3497:	0 0	0	0	Ö	1	Ő	Ö	Ö
3505:	ő	ĺ	Ō	1	0	0	0	0
3513:	0	0	1	0	0	0 0	1 0	0 0
3521:	0 0	0 0	0 0	0 0	C 0	0	0	0
3529: 3537:	0	0	0	1	ő	Ö	Ö	0
3545:	Ö	0	0	0	0	0	0	0
3553:	0	9	0	0 0	0 0	0 0	0 0	0
3561: 3569:	0 0	0 0	0 0	0	0	0	ŏ	Ö
3577 :	Ö	Ö	ő	0	0	1	<u>C</u>	0
358 5:	O	0	0	0	0	0	0	0
3593:	0	0 0	0 0	0 0	0	0 0	0	0
3601: 3609:	0	0	1	ő	0	Ŏ	Õ,	Ō
3617:	Ö	Ö	0	0 -	0	0	0	0
3625:	0	0	1	0	0 0	0 0	0 0	0
3633: 3641:	0	0 0 .	0 0	0 0	1	Ű	Ö	Ö
3649:	0	0	ő	Ŏ ·	Ō	0	1	0
3657:	1	0	0	0	0	0	0 0	1 0
3665:	0	2 0	0 1	0 0	0 Ü	0 0	0	0
3673: 3681:	0 1	0	1	0	0	ő	0	1
3689:	Õ	Ō	0	0	0	0	C	0
3697:	0	0	0 .	0	0	0 1	0 0	0 0
3705: 3713:	0 0	0 0	0 0	0 0	1 0	1.	1	0
3721:	1	Ö	ŏ	Ö	0	0	1	0
3729:	1	0	0	0	0	0	0 0	0 1
3737:	0	0 0	1 1 0	0	0 0	0 0	0	0
3745: 3753:	1 0	0	0	0	Ö	Ö	Ö	0
3761:	0	1	0	0	0	÷,	0	0
3769:	0	0	1 0	0 0	0 0	0	0 0	0 0
3777: 3785:	1 0	0 0	1	0	0	0	0	0
3793:	0	Ö	0	0	ĺ	0	0	0
3801:	0	0	0	O	0	0	0 1	0 0
3809:	1 0	0 0	0 0	0	0 0	0 1	1	0
3817:	U	U	U	J	5			-

Channel	Data Re	eport		4/13/20	016 9:0	MA 30:80		Page 10		
3825:	0	0	0	1	0	0	C	0		
	Sample Title: SEDIMENT 2016-03-16A									
Channel 3833: 3841: 3849: 3857: 3865: 3873: 3889: 3897: 3905: 3913: 3929: 3929: 3929: 3945: 3945: 3969: 3969: 3969: 3969: 4001: 4009: 4017: 4025:	Sample 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0					
4033: 4041: 4049: 4057: 4065: 4073: 4081: 4089:	0 0 1 0 0 0	0 0 1 0 0	0 0 0 0 0 0	0 0 0 0 1 0	0 0 0 0	0 0 0 0 2 0	1. 0 0 0 0	0		
1000,	Ŭ	•	-							

0000035696.CNF

1603102-05

SEDIMENT 2016-03-16B

GAMMA SPECTRUM ANALYSIS

Sample Identification

Sample Description Sample Type

: 1603102-05 : SEDIMENT 2016-03-16B : SOIL

Sample Size Facility

: 5.413E+02 grams

: Countroom

Sample Taken On **Acquisition Started** : 3/16/2016 1:45:27PM : 4/13/2016 9:12:11AM

Procedure Operator **Detector Name** : GAS-1402 pCi : Administrator : GE3 : GAS-1402

Geometry Live Time Real Time : 3600.0 seconds : 3611.8 seconds

Dead Time

: 0.33 %

Peak Locate Threshold Peak Locate Range (in channels) Peak Area Range (in channels) Identification Energy Tolerance

: 2.50 : 1 - 4096 : 9 - 4096 : 1.000 keV

Energy Calibration Used Done On Efficiency Calibration Used Done On

: 10/25/2014 : 10/25/2014

Efficiency Calibration Description

Sample Number

: 35701

PEAK-TO-TOTAL CALIBRATION REPORT

Peak-to-Total Efficiency Calibration Equation

1603102-05

SEDIMENT 2016-03-16B

PEAK LOCATE REPORT

Peak Locate Performed on

: 4/13/2016 10:12:24AM

Peak Locate From Channel Peak Locate To Channel

: 1 : 4096

Peak Search Sensitivity

: 2.50

Peak No.	Energy (keV)	Centroid Channel	Centroid Uncertainty	Peak Significance
1	46.96	47.19	0.0000	0.00
2	74.94	75.15	0.0000	0.00
3	77.63	77.85	0.0000	0.00
4	93.14	93.34	0.0000	0.00
5	99.10	99.30	0.0000	0.00
6	105.27	105.47	0,0000	0.00
7	143.61	143.78	0.0000	0.00
8	186.10	186.25	0.0000	0.00
9	211.75	211.89	0.0000	0.00
10	238.90	239.03	0.000	0.00
11	241.86	241.99	0.000	0.00
12	270.57	270.68	0.000	0.00
13	295.68	295.78	0.0000	0,00
14	309.46	309.55	0.0000	0.00
15	338.74	338.82	0.0000	0.00
16	342.11	342.18	0.0000	0.00
17	348.34	348.41	0,0000	0.00
18	352.37	352.44	0.0000	0.00
19	464.39	464.40	0.0000	0.00
20	477.97	477.98	0.0000	0.00
21	511.71	511.70	0.0000	0.00
22	549.41	549.39	0.0000	0.00
23	579.04	579.00	0.0000	0.00
24	583.85	583.80	0.0000	0.00
25	609.72	609,66	0.0000	0.00
26	698.53	698.43	0.0000	0.00
27	702.53	702.43	0.0000	0.00
28	710.67	710.57	0.0000	0.00
29	728.02	727.91	0.0000	0.00
30	734.74	734.63	0.0000	0.00
31	768.74	768.61	0.0000	0.00
32	795.34	795.20	0.0000	0.00
33	851.90	851.73	0.0000	0.00
34	857.83	857.66	0.0000	0.00
35	861.01	860.84	0.0000	0.00
36	911.61	911.41	0.0000	0.00
37	969.44	969.22	0.0000	0.00
38	973.00	9 72.78	0.0000	0.00
39	976.44	976.22	0.0000	0.00
40	984.30	984.07	0.0000	0.00
41	1003.36	1003.12	0.0000	0.00
42	1098.37	1098.10	0.0000	0.00

1603102-05

SEDIMENT 2016-03-16B

Peak No.	Energy (keV)	Centroid Channel	Centroid Uncertainty	Peak Significance
43	1120.29	1120.01	0.0000	0.00
44	1126.05	1125.76	0.0000	0.00
45	1148.36	1148.06	0.0000	0.00
46	1155.50	1155.20	0.0000	0.00
47	1160.24	1159.94	0.000	0.00
48	1232.21	1231.87	0.0000	0.00
49	1237.82	1237.49	0.0000	0.00
50	1282.37	1282.02	0.0000	0.00
51	1381.53	1381.14	0.0000	0.00
52	1460.80	1460.38	0.0000	0.00
53	1496.40	1495.97	0.0000	0.00
54	1510.05	1509.61	0.0000	0.00
55	1590.33	1589.86	0.000	0.00
56	1629.99	1629.51	0,0000	0.00
57	1764.39	1763.86	0.0000	0.00
58	1776.37	1775.83	0.0000	0.00
59	1845.91	1845.35	0.0000	0.00
60	1985.77	1985.17	0.0000	0.00
61	2118.89	2118.25	0.0000	0.00
62	2203.33	2202.66	0.0000	0.00
63	2217.47	2216.80	0.0000	0.00
64	2283.78	2283.09	0.0000	0.00
65	26146	2613.58	0.0000	0.00

? = Adjacent peak noted Errors quoted at 2.000sigma

for 1603102-05

SEDIMENT 2013-05-16B

PEAK ANALYSIS REPORT

Peak Analysis Performed on

: 4/13/2016 10:12:24AM

Peak Analysis From Channel

: 1

Peak Analysis To Channel

: 4096

	Peak No.	Energy (keV)	ROI start	ROI end	Peak Centroid	Net Peak Area	Net Area Uncertainty	Continuum Counts	FWHM (keV)
-	1	46.96	44 -	49	47.19	1.63E+02	62.36	6.43E+02	1.70
М	$\frac{1}{2}$	74.94	72 -	81	75.15	2.39E+02	77.39	9.42E+02	1.66
m	3	77.63	72 -	81	77.85	4.97E+02	84.36	9.22E+02	1.67
•••	4	93.14	90 -	97	93.34	3.61E+02	90.73	1.04E+03	2.15
	5	99.10	98 -	103	99.30	4.69E+01	55.05	5.80E+02	1.55
	. 6	105.27	103 -	108	105.47	6.93E+01	56.44	5.85E+02	2.82
	7	143.61	140 -	147	143.78	7.87E+01	68.93	7.39E+02	2.55
	8	186.10	182 -	190	186.25	1.89E+02	72.68	6.95E+02	2.07
	9	211.75	205 -	220	211.89	1.05E+02	101.67	9.89E+02	7.68
M	10	238.90	234 -	246	239.03	4.87E+02	60.88	3.10E+02	1.89
m	11	241.86	234 ~	246	241.99	1.40E+02	62.37	3.41E+02	1.89
110	12	270.57	267 -	273	270.68	6.83E+01	44.16	3.05E+02	2.14
	13	295.68	292 -	298	295.78	1.83E+02	48.57	3.36E+02	1.58
	14	309.46	306 -	314	309.55	4.19E+01	42.87	2.58E+02	2.05
М	15	338.74	336 -	345	338.82	1.15E+02	34.37	1.55E+02	1.99
m	16	342.11	336	345	342.18	3.81E+01	33.84	1.25E+02	1.99
M	17	348.34	346 -	357	348.41	2.93E+01	20.88	7.44E+01	2.06
m	18	352.37	346 -	357	352.44	3.76E+02	44.51	1.15E+02	1.75
111	19	464.39	460 -	472	464.40	6.23E+01	47.91	2.41E+02	4.21
	20	477.97	474 -	482	477.98	5.00E+01	35.40	1.62E+02	1.56
	21	511.71	506 -	518	511.70	1.58E+02	42.18	1.30E+02	2.32
	22	549.41	546 -	552	549.39	3.10E+01	22.56	7.00E+01	1.16
М	23	579.04	578 -	590	579.00	1,28E+01	10.30	2.78E+01	1.98
m	24	583.85	578 -	590	583.80	1.21E+02	32.29	8.98E+01	2.18
111	25	609.72	606 -	615	609.66	2.34E+02	44.61	1.52E+02	1.86
M	26	698.53	696 -	713	698.43	2.62E+01	16.11	3.15E+01	2.49
m	. 27	702.53	696 -	713	702.43	2.47E+01	21.15	4.81E+01	2.49
m	28	710.67	606 -	713	710.57	1.94E+01	18.85	5.41E+01	2.49
	29	728.02	723 -	731	727.91	3.31E+01	27.74	9.59E+01	3,23
	30	734.74	732 -	737	734.63	1.63E+01	17.06	4.55E+01	2.42
	31	768.74	765 -	772	768.61	2.41E+01	27.57	1.08E+02	1.91
	32	795.34	790 -	799	795.20	3.10E+01	26.78	8.40E+01	5.08
	33	851.90	849 -	855	851.73	1.65E+01	17.53	4.10E+01	2.51
М		857.83	856 -	865	857.66	1.21E+01	11.49	1.74E+01	2.67
m		861.01	856 -	865	860.84	3.37E+01	21.87	4.70E+01	2.85
111	36	911.61	907 -	915	911.41	9,05E+01	27.78	6.30E+01	1.75
М		969.44	965	978	969.22	7.14E+01	25.26	8.68E+01	2.42
m		973.00	965 -	978	972.78	1.62E+01	24.37	5,12E+01	2.42
m		976.44	965 -	978	976.22	1.38E+01	15.17	2.08E+01	2.40
111	40	984.30	979 -	990	984.07	2.98E+01	21.35	4.25E+01	8.05

1603102-05

SEDIMENT 2016-03-16B

	Peak No.	Energy (keV)	ROI RO start en		Net Peak Area	Net Area Uncertainty	Continuum Counts	FWHM (keV)
-	41	1003.36	1000 - 100	6 1003.12	1.70E+01	15.56	3.19E+01	2.80
	42	1098.37	1095 - 110	1 1098.10	1.65E+01	17.06	3,90E+01	3.63
М	43	1120.29	1115 - 112	8 1120.01	4.96E+01	22.81	6.56E+01	2.46
m	44	1126.05	1115 - 112	8 1125.76	1.23E+01	15.91	3.39E+01	3.33
Μ	45	1148.36	1145 - 116	3 1148.06	2.19E+01	13.08	1.89E+01	3.34
m	46	1155.50	1145 - 116	3 1155.20	1.69E+01	18,59	3.22E+01	3.04
m	47	1160.24	1145 - 116	3 1159.94	1.40E+01	16.37	3.08E+01	3,35
М	48	1232.21	1230 - 124	7 1231.87	1.20E+01	10.95	2.40E+01	2.81
m	49	1237.82	1230 - 124	7 1237.49	3.29E+01	20.49	4.80E+01	2.68
	50	1282,37	1277 - 128	8 1282.02	3.14E+01	20.40	3.73E+01	4.30
	51	1381.53	1374 - 139	0 1381.14	2.60E+01	19.20	2.40E+01	12.56
	52	1460.80	1455 - 146	6 1460.38	3.35E+02	39.75	3.06E+01	2.28
	53	1496.40	1492 - 149	9 1495.97	9.15E+00	9.17	7.69E+00	3.10
	54	1510.05	1507 - 151	2 1509.61	5.78E+00	7.35	6.44E+00	1.68
	55	1590.33	1583 - 159	5 1589.86	1.97E+01	13.73	1.26E+01	8.13
	56	1629.99	1626 - 163		1.27E+01	10.00	8.59E+00	1.56
	57	1764.39	1757 - 176	7 1763.86	5.60E+01	14.97	0.00E+00	2.47
	58	1776.37	1772 - 177		6.00E+00	4.90	0.00E+00	1.12
	59	1845.91	1840 - 184	9 1845.35	1.07E+01	8.77	4.54E+00	4.88
	60	1985.77	1982 - 198		6.00E+00	4.90	0.00E+00	1.98
	61	2118.89	2114 - 212	2 2118.25	1.20E+01	6.93	0.00E+00	1.47
	62	2203.33	2198 - 220		1.12E+01	10.68	9.63E+00	1.87
	63	2217.47	2212 - 222		1.00E+01	6.32	0.00E+00	3.65
	64	2283.78	2277 - 228	2283.09	6.17E+00	7.81	5.67E+00	1,28
	65	2614.36	2610 - 261		3.60E+01	1.2.00	0.00E+00	1.49

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

PEAK ANALYSIS REPORT

Peak Analysis Performed on

: 4/13/2016 10:12:24AM

Peak Analysis From Channel

: 1

Peak Analysis To Channel

: 4096

,	Peak	Energy	ROI	ROI	Net Peak	Net Area	Continuum	Critical
	No.	(keV)	start	end	Area	Uncertainty	Counts	Level
M m	1 2 3	46.96 74.94 77.63	44 - 72 - 72 -	49 81 81	1.63E+02 2.39E+02 4.97E+02	62 36 77.39 84.36	6.43E+02 9.42E+02 9.22E+02	4.68E+01 5.05E+01 4.99E+01

Analysis Report for 1603102-05

4 93.14 90 - 97 3.61E+02 99.73 1.04B+03 6.77E+01 5 99.10 98 - 103 4.69E+01 55.05 5.80E+02 4.38E+01 6.05.27 103 - 108 6.93E+01 56.45 5.85E+02 4.38E+01 7 143.61 140 - 147 7.87E+01 68.93 7.39E+02 5.48E+01 81.61.01 182 - 190 1.99E+02 72.66 6.95E+02 5.48E+01 9 211.75 205 - 220 1.05E+02 101.67 9.89E+02 5.48E+01 9 211.75 205 - 220 1.05E+02 101.67 9.89E+02 8.18E+01 11 241.86 234 - 246 1.40E+02 62.37 3.10E+02 8.99E+01 8.99E+01 12 270.57 267 - 273 6.83E+01 44.16 3.05E+02 3.73E+01 12 270.57 267 - 273 6.83E+01 44.16 3.05E+02 3.73E+01 13 295.68 292 - 298 1.83E+01 44.16 3.05E+02 3.05E+02 4.20E+01 13 395.68 292 - 298 1.83E+01 44.287 2.58E+02 4.20E+01 13 395.68 292 - 298 1.83E+01 42.87 2.58E+02 2.05E+01 13 395.68 293 - 295 295 295 295 295 295 295 295 295 295		Peak No.	Energy (keV)	ROI start	ROI end	Net Peak Area	Net Area Uncertainty	Continuum Counts	Critical Level
5 99.10 98 - 103 4.69E+01 55.05 5.80E+02 4.38E+01 7 103 - 108 6.93E+01 56.44 5.85E+02 5.48E+01 7 143.61 140 - 147 7.87E+01 68.93 7.39E+02 5.48E+01 9 211.75 205 - 207 1.05E+02 101.67 9.89E+02 2.54E+01 10 238.90 234 - 246 4.87E+02 60.88 3.10E+02 2.89E+01 12 241.86 234 - 246 1.40E+02 60.88 3.10E+02 2.89E+01 12 270.57 267 - 273 6.83E+01 44.16 3.05E+02 3.04E+01 13 295.68 292 - 298 1.83E+02 48.57 3.36E+02 3.37E+01 13 295.68 292 - 298 1.83E+02 44.57 3.36E+02 3.37E+01 14 309.46 336 - 314 4.19E+01 42.87 2.58E+02 3.36E+01 14 309.46 336 - 314 4.19E+01 42.87 2.58E+02 3.36E+01 14 309.46 336 - 314 4.19E+01 42.87 2.58E+02 3.36E+01 17 348.34 346 - 357 2.93E+01 33.84 1.25E+02 3.43F+0 13 384 346 - 357 2.93E+01 20.88 7.44E+01 1.42E+01 19 464.39 460 - 472 6.33E+01 47.91 2.41E+02 3.72E+01 20 477.97 474 - 442 5.00E+01 35.40 1.62E+02 2.76EE+01 19 464.39 460 - 472 6.33E+01 47.91 2.41E+02 3.72E+01 20 477.97 474 - 442 5.00E+01 35.40 1.62E+02 2.76EE+01 22 549.41 546 552 3.10E+01 32.49 1.62E+02 2.76EE+01 10.30 2.76E±01 16.61E+01 1.61E±01 1.61E±01 22 549.41 546 552 3.10E±01 32.29 8.98E±01 1.61E±01 1.61E±01 32 579.04 578 - 550 1.28E±01 10.30 2.78E±01 1.56E±01 1.61E±01 32 579.04 578 - 550 1.28E±01 10.30 2.78E±01 1.56E±01 1.61E±01 32 579.04 578 - 550 1.28E±01 16.11 3.15E±02 2.76E±01 32 579.34 7790 - 702.53 696 - 713 2.62E±01 16.11 3.15E±02 2.67E±01 33 785.70 596 5713 2.62E±01 16.11 3.15E±01 2.08E±01 33 766.74 765 - 772 2.41E±01 27.77 1.08E±01 27.77 1.08E±02 2.67E±01 33 851.90 899 855 1.63E±01 17.06 4.55E±01 1.24E±01 32 795.34 790 - 799 3.10E±01 27.77 1.08E±01 2.08E±01 1.14E±01 2.774 4.70E±01 1.14E±01 3.75E±01 1.14E±01 2.775 1.08E±01 1.28E±01 1.030 976.44 965 978 1.33E±01 17.06 4.55E±01 1.13E±01 2.08E±01 1.13E±01 2.774 4.70E±01 1.13E±01 2.08E±01 1.13E±01 2.774 4.70E±01 1.13E±01 2.08E±01 1.15E±01		4	93.14	90 -	97	3.61E+02	90:73		
7 143.61 140 - 147 7.878+01 68.93 7.398+02 2.548+01 8.86.10 182 - 190 1.898+02 72.68 6.958+02 2.548+01 9 211.75 205 - 220 1.058+02 101.67 9.898+02 2.548+01 12 238.90 234 - 246 4.878+02 60.88 3.108+02 2.898+01 12 241.86 234 - 246 4.878+02 60.88 3.108+02 2.898+01 12 270.57 267 - 273 6.888+01 44.16 3.058+02 3.378+01 13 295.68 292 - 298 1.838+01 44.16 3.058+02 3.378+01 14 309.46 306 - 314 4.198+01 42.87 3.368+02 4.208+01 14 309.46 336 - 314 4.198+01 42.87 3.368+02 4.208+01 14 309.46 336 - 314 4.198+01 42.87 3.368+02 2.058+01 14 338.34 336 - 345 3.818+01 33.84 1.258+02 2.058+01 18 38.38 38.38 36 - 345 3.818+01 33.84 1.258+02 2.058+01 18 38.38 38 38 36 - 345 3.818+01 33.84 1.258+02 2.058+01 18 38 38 38 38 36 - 357 2.938+01 2.088 7.448+01 1.428+01 18 38 32.37 346 - 357 2.938+01 2.088 7.448+01 1.428+01 18 38 32.37 346 - 357 2.938+01 2.088 7.448+01 1.428+01 19 464.39 460 - 472 6.238+01 47.91 2.418+02 2.678+01 22 549.41 546 - 552 3.108+01 22.56 7.008+01 1.618+01 18 32 579.04 578 - 590 1.288+01 10.30 2.788+01 1.618+01 1.618+01 18 32 579.04 578 - 590 1.288+01 10.30 2.788+01 1.618+01 1.618+01 18 32 579.04 578 - 590 1.288+01 10.30 2.788+01 1.5668+00 18 25 699.72 606 - 615 2.348+02 44.61 1.528+02 2.678+01 32 599.54 578 - 590 1.288+01 10.30 2.788+01 1.5668+00 18 25 699.72 606 - 615 2.348+02 44.61 1.528+02 2.678+01 32 599.54 799.2 31 33 3104+01 22.56 7.008+01 1.618+01 32 599.77 702.53 696 - 713 2.478+01 11.147+01 1.147+01 32 7.77 702.53 696 - 713 2.478+01 11.147+01 1.147+01 1.147+01 32 7.77 702.53 696 - 713 2.478+01 11.147+01 1.147+01 1.147+01 32 7.77 702.53 696 - 713 2.478+01 11.147+01 1.147+01				98 -	103	4.69E+01	55.05	5.80E+02	
Record 143					108	6.93E+01	56.44	5.85E+02	4.43E+01
B						7.87E+01	68.93	7.39E+02	
M						1.89E+02	72.68	6.95E+02	
M 10 238.90 234 - 246 4.87E+02 60.88 3.10E+02 2.89E+01 m 11 241.86 234 - 246 1.40E+02 62.37 3.11E+02 3.06E+02 3.37E+01 13 295.68 239 - 298 1.83E+02 48.57 3.36E+02 3.37E+01 M 15 338.74 336 - 345 3.15E+02 34.37 1.55E+02 2.05E+01 M 16 342.11 336 - 345 3.15E+02 34.37 1.55E+02 1.84E+01 M 17 348.34 346 - 357 2.93E+01 20.88 7.4EE+01 1.42E+01 M 17 348.34 346 - 357 3.76E+02 44.51 1.15E+02 1.76E+01 M 17 348.34 366 - 357 3.76E+02 44.51 1.15E+02 1.76E+01 M 20 477.97 474 - 482 5.00E+01 35.40 1.62E+02 2.67E+01 21 511.71 506 - 518 1.58E+02 42.18 1.30E						1.05E+02	101.67	9.89E+02	8.18E+01
The color of the	M					4.87E+02	60.88	3.10E+02	2.89E+01
12						1.40E+02	62.37	3.41E+02	3.04E+01
13						6.83E+01	44.16	3.05E+02	
14							48.57	3.36E+02	4.20E+01
M 15 338.74 336 - 345 1.15E-02 34.37 1.55E+02 2.05E+01 m 16 342.11 336 - 345 3.81E+01 33.84 1.25E+02 1.84E+01 1.42E+01 1.32E+01 1.32E+01 1.42E+01 1							42.787	2.58E+02	3.36E+01
m 16 342.11 336 - 345 3.81E+01 33.84 1.25E+02 1.84E+01 M 17 348.34 346 - 357 2.93E+01 20.88 7.44E+01 1.42E+01 M 18 352.37 346 - 357 3.76E+02 44.51 1.15E+02 1.76E+01 19 464.39 460 - 472 6.23E+01 47.91 2.41E+02 3.72E+01 20 477.97 474 - 482 5.00E+01 35.40 1.62E+02 2.67E+01 21 511.71 506 - 518 1.58E+02 42.18 1.30E+02 2.78E+01 22 549.41 546 - 552 3.10E+01 22.56 7.00E+01 1.61E+01 23 579.04 578 - 590 1.28E+01 10.30 2.78E+01 8.6E+00 25 609.72 606 - 615 2.34E+02 34.16 1.55E+02 2.67E+01 26 698.53 696 - 713 2.62E+01 16.11 3.15E+01 9.23E+00 27 702.53 696 - 713 <td>M</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>34.37</td> <td>1.55E+02</td> <td>2.05E+01</td>	M						34.37	1.55E+02	2.05E+01
M 17 348.34 346- 357 2.93E+01 20.88 7.44E+01 1.42E+01 1.9 464.39 460- 472 6.23E+01 47.91 2.41E+02 1.76E+01 20 477.97 474- 482 5.00E+01 35.40 1.62E+02 2.67E+01 21 511.71 506- 518 1.58E+02 42.18 1.30E+02 2.78E+01 22 549.41 546- 552 3.10E+01 22.56 7.00E+01 1.61E+01 22.56 609.72 606- 615 2.34E+02 44.61 1.52E+02 2.67E+01 25 609.72 606- 615 2.34E+02 44.61 1.52E+02 2.67E+01 25 609.72 606- 615 2.34E+02 44.61 1.52E+02 2.67E+01 27.70 2.53 696- 713 2.47E+01 16.11 3.15E+01 9.23E+00 29 728.02 723- 731 3.31E+01 27.74 9.59E+01 1.24E+01 31 768.74 732- 737 1.63E+01 17.06 4.55E+01 1.24E+01 31 768.74 765- 772 2.41E+01 27.57 1.08E+02 2.12E+01 32 795.34 790- 799 3.10E+01 26.78 8.40E+01 2.00E+01 33 851.90 849- 855 1.65E+01 17.53 4.10E+01 1.3E+01 3.5E+01 32.89E+01 1.5EE+01 32.99 795.34 790- 799 3.10E+01 27.77 8.62E+01 1.3EE+01 1.3EE+01 32.99 795.34 790- 919 0.5EE+01 17.53 4.10E+01 1.3EE+01 32.99 795.34 790- 919 0.5EE+01 27.78 6.30E+01 1.3EE+01 32.99 795.34 790- 919 0.5EE+01 17.53 4.10E+01 1.3EE+01 32.99 795.34 790- 919 0.5EE+01 17.53 4.10E+01 1.3EE+01 1.3EE+01 32.99 796.44 965- 978 7.14E+01 27.57 1.08E+02 2.12EE+01 35.90 391.61 907- 915 9.05E-01 27.78 6.30E+01 1.3EE+01 1.3EE+01 40.90E+01 1.5EE+01 1.3EE+01 1							33.84	1.25E+02	1.84E+01
The color of the							20.88	7.44E+01	1.42E+01
19							44.51	1.15E+02	1.76E+01
20	111						47.91	2.41E+02	3.72E+01
Section							35.40	1.62E+02	
Name								1.30E+02	2.78E+01
M 23 579.04 578 - 590 1.28E+01 10.30 2.78E+01 8.66E+00 2.56E+00 2.5 609.72 606 - 615 2.34E+02 32.29 8.98E+01 1.56E+01 2.5 609.72 606 - 615 2.34E+02 44.61 1.52E+02 2.67E+01 2.6 698.53 696 - 713 2.62E+01 16.11 3.15E+01 9.23E+00 2.7 702.53 696 - 713 2.47E+01 21.15 4.81E+01 1.14E+01 2.9 728.02 723 - 731 3.31E+01 27.74 9.59E+01 2.08E+01 30 734.74 732 - 737 1.63E+01 17.06 4.55E+01 1.24E+01 31 768.74 765 - 772 2.41E+01 27.57 1.08E+02 2.12E+01 33 851.90 849 - 855 1.65E+01 17.53 4.10E+01 2.00E+01 33 851.90 849 - 855 1.21E+01 11.49 1.74E+01 6.86E+00 35 861.01 856 - 865 3.37E+01 21.87 4.70E+01 1.13E+01 1.3E+01 36 911.61 907 - 915 9.05E+01 21.87 4.70E+01 1.13E+01 1.3E+01 36 911.61 907 - 915 9.05E+01 21.87 4.70E+01 1.13E+01 1.3E+01 38 973.00 965 - 978 7.14E+01 25.26 8.66E+01 1.53E+01 1.16E+01 1.16E+01 1.26E+01 41 1.003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.23E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.23E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.23E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.23E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.23E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.23E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.33E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.33E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.33E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.33E+01 41 1003.36 1145 - 1163 1.49E+01 15.91 3.39E+01 1.23E+01 1.51E+01 1.50E+01								7.00E+01	1.61E+01
m 24 583.85 578 - 590 1.21E+02 32.29 8.98E+01 1.56E+01 25 609,72 606 - 615 2.34E+02 44.61 1.52E+02 2.67E+01 M 26 698.53 696 - 713 2.62E+01 16.11 3.15E+01 9.23E+00 m 27 702.53 696 - 713 2.47E+01 21.15 4.81E+01 1.14E+01 29 728.02 723 - 731 3.31E+01 27.74 9.59E+01 2.08E+01 30 734.74 732 - 737 1.63E+01 17.06 4.55E+01 1.24E+01 31 768.74 765 - 772 2.41E+01 27.57 1.08E+02 2.12E+01 32 795.34 790 - 799 3.10E+01 26.78 8.40E+01 2.00E+01 33 851.90 849 - 855 1.65E+01 17.53 4.10E+01 1.28E+01 M 34 857.83 856 - 865 3.37E+01 21.87 4.70E+01 1.13E+01 M 35 <t< td=""><td>M</td><td></td><td></td><td></td><td></td><td>· ·</td><td></td><td>2.78E+01</td><td>8.66E+00</td></t<>	M					· ·		2.78E+01	8.66E+00
25								8.98E+01	1.56E+01
M 26 698.53 696 - 713 2.62E+01 16.11 3.15E+01 9.23E+00 m 27 702.53 696 - 713 2.47E+01 21.15 4.81E+01 1.4E+01 28 710.67 696 - 713 1.94E+01 18.55 5.41E+01 1.21E+01 29 728.02 723 - 731 3.31E+01 27.74 9.59E+01 2.08E+01 30 734.74 732 - 737 1.63E+01 17.06 4.55E+01 1.24E+01 31 768.74 765 - 772 2.41E+01 27.57 1.08E+02 2.12E+01 32 795.34 790 - 799 3.10E+01 26.78 8.40E+01 2.00E+01 33 851.90 849 - 855 1.65E+01 17.53 4.10E+01 1.28E+01 34 857.83 856 - 865 1.21E+01 17.53 4.10E+01 1.28E+01 36 861.01 856 - 865 3.37E+01 21.87 4.70E+01 1.3E+01 36 911.61 907 - 915 9.05E+01 27.78 6.30E+01 1.66E+01 37 969.44 965 - 978 7.14E+01 25.26 8.68E+01 1.53E+01 m 38 973.00 965 - 978 1.62E+01 24.37 5.12E+01 1.18E+01 39 976.44 965 - 978 1.38E+01 25.26 8.68E+01 1.53E+01 40 984.30 979 - 990 2.98E+01 15.17 2.08E+01 1.18E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.51E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 43 1120.29 1115 - 1128 4.96E+01 15.91 3.39E+01 7.15E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145 - 1163 1.69E+01 16.37 3.08E+01 9.57E+00 M 48 1232.21 1230 - 1247 3.29E+01 10.95 2.40E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.4E+01 51 1381.53 1374 1390 2.60E+01 19.20 2.40E+01 1.4E+01 51 1381.53 1374 1390 2.60E+01 19.20 2.40E+01 1.48E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.38E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 4.48E+00	111							1.52E+02	2.67E+01
m 27 702.53 696 - 713 2.47E+01 21.15 4.81E+01 1.14E+01 m 28 710.67 696 - 713 1.94E+01 18.55 5.41E+01 1.21E+01 29 728.02 723 - 731 3.31E+01 27.74 9.59E+01 2.08E+01 30 734.74 732 - 737 1.63E+01 17.06 4.55E+01 1.24E+01 31 768.74 765 - 772 2.41E+01 27.57 1.08E+02 2.12E+01 32 795.34 790 - 799 3.10E+01 26.78 8.40E+01 2.00E+01 33 851.90 849 - 855 1.65E+01 17.53 4.10E+01 1.28E+01 33 851.90 849 - 855 1.65E+01 17.753 4.10E+01 1.28E+01 33 861.01 856 - 865 3.37E+01 21.87 4.70E+01 1.13E+01 36 911.61 907 - 915 9.05E+01 <t< td=""><td>M</td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.15E+01</td><td>9.23E+00</td></t<>	M							3.15E+01	9.23E+00
m 28 710.67 696 - 713 1.94E+01 18.85 5.41E+01 1.21E+01 29 728.02 723 - 731 3.31E+01 27.74 9.59E+01 2.08E+01 30 734.74 732 - 737 1.63E+01 17.06 4.55E+01 1.24E+01 31 768.74 765 - 772 2.41E+01 27.57 1.08E+02 2.12E+01 32 795.34 790 - 799 3.10E+01 26.78 8.40E+01 2.00E+01 33 851.90 849 - 855 1.65E+01 17.53 4.10E+01 1.28E+01 M 34 857.83 856 - 865 1.21E+01 11.49 1.74E+01 6.86E+00 M 35 861.01 856 - 865 3.37E+01 21.87 4.70E+01 1.13E+01 M 37 969.44 965 - 978 7.14E+01 25.26 8.68E+01 1.53E+01 M 38 973.00 965 -								4.81E+01	1.14E+01
29 728.02 723 - 731 3.31E+01 27.74 9.59E+01 2.08E+01 30 734.74 732 - 737 1.63E+01 17.06 4.55E+01 1.24E+01 31 768.74 765 - 772 2.41E+01 27.57 1.08E+02 2.12E+01 32 795.34 790 - 799 3.10E+01 26.78 8.40E+01 2.00E+01 33 851.90 849 - 855 1.65E+01 17.53 4.10E+01 1.28E+01 M 34 857.83 856 - 865 1.21E+01 11.49 1.74E+01 6.86E+00 M 35 861.01 856 - 865 3.37E+01 21.87 4.70E+01 1.13E+01 36 911.61 907 - 915 9.05E+01 27.78 6.30E+01 1.66E+01 M 37 969.44 965 - 978 7.14E+01 25.26 8.68E+01 1.53E+01 M 38 973.00 965 - 978 1.62E+01 24.37 5.12E+01 1.18E+01 M 39 976.44 965 - 978 1.38E+01 15.17 2.08E+01 7.49E+00 40 984.30 979 - 990 2.98E+01 21.35 4.25E+01 1.51E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 44 1126.05 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 45 1148.36 1145 - 1163 2.19E+01 15.91 3.39E+01 9.57E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.40E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.40E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.40E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.40E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.40E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.40E+01 50 1282.37 1277 - 1288 3.14E+01 20.49								5.41E+01	1.21E+01
30	111							9.59E+01	2.08E+01
31 768.74 765 - 772 2.41E+01 27.57 1.08E+02 2.12E+01 32 795.34 790 - 799 3.10E+01 26.78 8.40E+01 2.00E+01 33 851.90 849 - 855 1.65E+01 17.53 4.10E+01 1.28E+01 1.28E+01 11.49 1.74E+01 1.28E+01 11.49 1.74E+01 1.28E+01 11.49 1.74E+01 1.3E+01 1.28E+01 11.49 1.74E+01 1.3E+01								4.55E+01	1.24E+01
32 795.34 790 - 799 3.10E+01 26.78 8.40E+01 2.00E+01 33 851.90 849 - 855 1.65E+01 17.53 4.10E+01 1.28E+01 M 34 857.83 856 - 865 1.21E+01 11.49 1.74E+01 6.86E+00 M 35 861.01 856 - 865 3.37E+01 21.87 4.70E+01 1.13E+01 36 911.61 907 - 915 9.05E+01 27.78 6.30E+01 1.66E+01 M 37 969.44 965 - 978 7.14E+01 25.26 8.68E+01 1.53E+01 M 38 973.00 965 - 978 1.62E+01 24.37 5.12E+01 1.18E+01 M 39 976.44 965 - 978 1.38E+01 15.17 2.08E+01 7.49E+00 40 984.30 979 - 990 2.98E+01 21.35 4.25E+01 1.51E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1115 - 1128 4.96E+01 17.06 3.90E+01 1.23E+01 M 44 1126.05 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 4.80E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 50 1282.37 1277 - 1288 3.14E+01 50 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 5.66E+00 5								1.08E+02	2.12E+01
M 34 857.83 856- 865 1.21E+01 11.49 1.74E+01 6.86E+00 m 35 861.01 856- 865 3.37E+01 21.87 4.70E+01 1.13E+01 36 911.61 907- 915 9.05E+01 27.78 6.30E+01 1.66E+01 m 38 973.00 965- 978 7.14E+01 25.26 8.68E+01 1.53E+01 25.26 8.68E+01 1.53E+01 1.8E+01 38 973.00 965- 978 1.38E+01 24.37 5.12E+01 1.18E+01 40 984.30 979- 990 2.98E+01 21.35 4.25E+01 1.51E+01 41 1003.36 1000- 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095- 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1115- 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 44 1126.05 1115- 1128 1.23E+01 15.91 3.39E+01 9.57E+00 M 45 1148.36 1145- 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145- 1163 1.69E+01 13.08 1.89E+01 7.15E+00 M 47 1160.24 1145- 1163 1.40E+01 16.37 3.08E+01 9.57E+00 M 48 1232.21 1230- 1247 1.20E+01 10.95 2.40E+01 9.12E+00 M 48 1237.82 1230- 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 49 1237.82 1230- 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 49 1237.82 1230- 1247 3.29E+01 10.95 2.40E+01 1.40E+01 50 1282.37 1277- 1288 3.14E+01 20.49 4.80E+01 1.4E+01 51 1381.53 1374- 1390 2.60E+01 19.20 2.40E+01 1.34E+01 51 1381.53 1374- 1390 2.60E+01 19.20 2.40E+01 1.34E+01 51 1496.40 1492- 1499 9.15E+00 9.17 7.669E+00 5.66E+00								8.40E+01	2.00E+01
M 34 857.83 856~ 865 1.21E+01 11.49 1.74E+01 6.86E+00 m 35 861.01 856- 865 3.37E+01 21.87 4.70E+01 1.13E+01 36 911.61 907- 915 9.05E+01 27.78 6.30E+01 1.66E+01 M 37 969.44 965- 978 7.14E+01 25.26 8.68E+01 1.53E+01 m 38 973.00 965- 978 1.62E+01 24.37 5.12E+01 1.18E+01 M 39 976.44 965- 978 1.38E+01 15.17 2.08E+01 7.49E+00 40 984.30 979- 990 2.98E+01 121.35 4.25E+01 1.51E+01 M 1003.36 1000- 1006 1.70E+01 15.56 3.19E+01 1.08E+01 M 1003.36 1000- 1006 1.70E+01 15.56 3.19E+01 1.08E+01 M 1120.29 1115- 1128 4.96E+01 17.06 3.90E+01 1.23E+01 M 1126.05 1115- 1128 1.23E+01 15.91 3.39E+01 9.57E+00 M 1148.36 1145- 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 155.50 1145- 1163 1.69E+01 13.08 1.89E+01 7.15E+00 M 1160.24 1145- 1163 1.69E+01 18.59 3.22E+01 9.34E+00 M 1232.21 1230- 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 1237.82 1230- 1247 3.29E+01 10.95 2.40E+01 1.40E+01 50 1282.37 1277- 1288 3.14E+01 20.40 3.73E+01 1.40E+01 51 1381.53 1374- 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455- 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492- 1499 9.15E+00 9.17 7.669E+00 5.66E+00 5.6								4.10E+01	1.28E+01
m 35 861.01 856 - 865 3.37E+01 21.87 4.70E+01 1.13E+01 m 36 911.61 907 - 915 9.05E+01 27.78 6.30E+01 1.66E+01 m 37 969.44 965 - 978 7.14E+01 25.26 8.68E+01 1.53E+01 m 38 973.00 965 - 978 1.3EE+01 24.37 5.12E+01 1.18E+01 m 39 976.44 965 - 978 1.38E+01 15.17 2.08E+01 7.49E+00 40 984.30 979 - 990 2.98E+01 21.35 4.25E+01 1.51E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1155 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 44 1126.05 1155 - 1128 1.23E+01 15.91 3.39E+01 7.15E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08	M							1.74E+01	6.86E+00
36 911.61 907 - 915 9.05E+01 27.78 6.30E+01 1.66E+01 M 37 969.44 965 - 978 7.14E+01 25.26 8.68E+01 1.53E+01 m 38 973.00 965 - 978 1.62E+01 24.37 5.12E+01 1.18E+01 m 39 976.44 965 - 978 1.38E+01 15.17 2.08E+01 7.49E+00 40 984.30 979 - 990 2.98E+01 21.35 4.25E+01 1.51E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145 - 1163 1.40E+01 16.37 3.08E+01 9.34E+00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.70E+01</td> <td>1.13E+01</td>								4.70E+01	1.13E+01
M 37 969.44 965 - 978 7.14E+01 25.26 8.68E+01 1.53E+01 m 38 973.00 965 - 978 1.62E+01 24.37 5.12E+01 1.18E+01 m 39 976.44 965 - 978 1.38E+01 15.17 2.08E+01 7.49E+00 40 984.30 979 - 990 2.98E+01 21.35 4.25E+01 1.51E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 m 44 1126.05 1115 - 1128 1.23E+01 15.91 3.39E+01 9.57E+00 m 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 m 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 m 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 m 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 m 49 1237.82 1230 - 1247 3.29E+01 10.95 2.40E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.40E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00	111							6.30E+01	1.66E+01
m 38 973.00 965 - 978 1.62E+01 24.37 5.12E+01 1.18E+01 m 39 976.44 965 - 978 1.38E+01 15.17 2.08E+01 7.49E+00 40 984.30 979 - 990 2.98E+01 21.35 4.25E+01 1.51E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 44 1126.05 1115 - 1128 1.23E+01 15.91 3.39E+01 9.57E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 M 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 49 1237.82 1230 - 1247 3.29E+01 10.95 2.40E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.40E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 45 1282.00 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 46 155 - 166E+00 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 47 1160.24 1145 - 1163 1.40E+01 19.20 2.40E+01 1.34E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 54 145 - 1468 1.28E+01 55 1460.80 1455 - 1466 3.35E+02 56 1460.80 1455 - 1466 3.35E+02 57 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 57 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 58 1496 1496 1496 1499 9.15E+00 9.17 7.69E+00 5.66E+00 58 1496 1496 1496 1499 9.15E+00 9.17 7.69E+00 5.66E+00 58 1496 1496 1496 1499 9.15E+00 9.17 7.69E+00 5.66E+00 58 1496 1496 1496 1496 1496 1496 1496 1496	M							8.68E+01	1.53E+01
m 39 976.44 965 - 978 1.38E+01 15.17 2.08E+01 7.49E+00 40 984.30 979 - 990 2.98E+01 21.35 4.25E+01 1.51E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 44 1126.05 1115 - 1128 1.23E+01 15.91 3.39E+01 9.57E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 M 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 49 1237.82 1230 - 1247 3.29E+01					-		24.37	5.12E+01	1.18E+01
40 984.30 979 - 990 2.98E+01 21.35 4.25E+01 1.51E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 44 1126.05 1115 - 1128 1.23E+01 15.91 3.39E+01 9.57E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 M 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 49 1237.82 1230 - 1247 3.29E+01 20.49 4.80E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 4.80E+01 1.14E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 4.80E+01 5.66E+00								2.08E+01	7.49E+00
41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 44 1126.05 1115 - 1128 1.23E+01 15.91 3.39E+01 9.57E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 M 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 49 1237.82 1230 - 1247 3.29E+01 20.49 4.80E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.40E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 4.57E+00	111							4.25E+01	1.51E+01
42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 44 1126.05 1115 - 1128 1.23E+01 15.91 3.39E+01 9.57E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 M 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 49 1237.82 1230 - 1247 3.29E+01 20.49 4.80E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 4.80E+01 1.14E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00								3.19E+01	1.08E+01
M 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 m 44 1126.05 1115 - 1128 1.23E+01 15.91 3.39E+01 9.57E+00 m 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 m 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 m 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 m 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 m 49 1237.82 1230 - 1247 3.29E+01 20.49 4.80E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 4.80E+01 1.14E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 5.66E+00								3.90E+01	1.23E+01
m 44 1126.05 1115 - 1128 1.23E+01 15.91 3.39E+01 9.57E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 m 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 m 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 m 49 1237.82 1230 - 1247 3.29E+01 20.49 4.80E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.40E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00	M						22.81	6.56E+01	1.33E+01
M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 16.37 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 16.37 1							15.91	3.39E+01	9.57E+00
m 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 m 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 m 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 m 49 1237.82 1230 - 1247 3.29E+01 20.49 4.80E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.40E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00								1.89E+01	7.15E+00
m 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 m 49 1237.82 1230 - 1247 3.29E+01 20.49 4.80E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.40E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00								3.22E+01	9.34E+00
M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 m 49 1237.82 1230 - 1247 3.29E+01 20.49 4.80E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.40E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00									9.12E+00
m 49 1237.82 1230 - 1247 3.29E+01 20.49 4.80E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.40E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00									8.05E+00
50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.40E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00									1.14E+01
51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00	111								
52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00									
53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00									
JJ 1450,40 1452 1155 3,500 00 00 00 00 00 00 00 00 00 00 00 00									
									4.57E+00

1603102-05

SEDIMENT 2016-03-16B

Peak No.	// 1/	ROI start	ROI end	Net Peak Area	Net Area Uncertainty	Continuum Counts	Critical Level
55	1590.33	1583 -	1595	1.97E+01	13.73	1.26E+01	8.61E+00
56	1629,99	1626 -	1633	1.27E+01	10.00	8.59E+00	5.76E+00
57	1764.39	1757 -	1767	5.60E+01	14.97	0.00E+00	0.00E+00
58	1776.37	1772 -	1777	6.00E+00	4.90	0.00E+00	0.00E+00
59	1845.91	1840	1849	1.07E+01	8.77	4.54E+00	4.80E+00
60	1985.77	1982 -	1987	6.00E+00	4.30	0.00E+00	0.00E+00
61	2118.89	2114 -	2122	1.20E+01	6.93	0.00E+00	0.00E+00
62	2203,33	2198 -	2207	1.12E+01	10.68	9.63E+00	6.84E+00
63	2217,47	2212 -	2220	1.00E+01	6.32	0.00E+00	0.00E+00
64	2283.78	2277 -	2286	6.17E+00	7.81	5.67E+00	4.95E+00
65	2614.36	2610 -	2617	3.60E+01	12.00	0.00E+00	0.00E+00

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

PEAK WITH NID REPORT

Peak Analysis Performed on

: 4/13/2016 10:12:24AM

Peak Analysis From Channel

; 1

Peak Analysis To Channel

: 4096

Tentative NID Library

: \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB

Peak Match Tolerance

: 1.000 keV

	Peak No.	Energy (keV)	ROI start	ROI end	Peak Centroid	Net Peak Area	Net Area Unce/tainty	Continuum Counts	Tentative Nuclide
	1	46.96	44 -	49	47.19	1.63E+02	62.36	6.43E+02	PB-210
Μ	2	74.94	72 -	81	75.15	2.39E+02	77.39	9.42E+02	AM-243
m	3	77.63	72 -	81	77.85	4.97E+02	84.36	9.22E+02	TI-44
	4	93.14	90	97	93.34	3.61E+02	90.73	1.04E+03	GA-67
	5	99.10	98 –	103	99.30	4.69E+01	55.05	5.80E+02	
	6	105.27	103 -	108	105.47	6.93E+01	56.44	5.85E+02	EU-155
	-								NP-239
	7	143.61	140 -	147	143.78	7.87E+01	68.93	7.39E+02	U-235
	8	186.10	182 -	190	186.25	1.89E+02	72.68	6.95E+02	RA-226
	9	211.75	205 -	220	211.89	1.05E+02	101.67	9.89E+02	
М	10	238.90	234 -	246	239.03	4.87E+02	60.88	3.10E+02	PB-212
m	11	241.86	234 -	246	241.99	1,40E+02	62.37	3.41E+02	RA-224
***	12	270.57	267 -	273	270.68	€.83≌+01	44.16	3.05E+02	
	13	295.68	252 -	298	295.78	1.83E+02	48.57	3.36E+02	PB-214
	14	309.46	305	314	309.55	4.19E+01	42.87	2.58E+02	
		222							

1603102-05

	Peak No.	Energy (keV)	ROI start	ROI end	Peak Centroid	Net Peak Area	Net Area Uncertainty	Continuum Counts	Tentative Nuclide
M	15	338.74	336 -	345	338.82	1.15E+02	34.37	1.55E+02	AC-228
m	16	342.11	336 -	345	342.18	3.81E+01	33.84	1.25E+02	
M	17	348.34	346 -	357	348.41	2.93E+01	20.88	7.44E+01	
m	18	352.37	343 -	357	352.44	3.76E+02	44.51	1.15E+02	PB-214
	19	464.39	460 -	472	464.40	6.23E+01	47.91	2.41E+02	
	20	477.97	474 -	482	477.98	5.00E+01	35.40	1.62E+02	BE-7
	21	511.71	506 -	518	511.70	1.58E+02	42.18	1.30E+02	
	22	549.41	546 -	552	549.39	3.10E+01	22.56	7.00E+01	
M	23	579.04	578 -	590	579.00	1.28E+01	10.30	2.78E+01	
m	24	583.85	578 -	590.	583.80	1.21E+02	32.29	8.98E+01	TL-208
4,,,	25	609.72	606 -	615	609.66	2.34E+02	44.61	1.52E+02	BI-214
M	26	698.53	696 -	713	698.43	2.62E+01	16.11	3.15E+01	
m	27	702.53	696 -	713	702.43	2.47E+01	21.15	4.81E+01	NB-94
m	28	710.67	696 -	713	710.57	1.94E+01	18.85	5.41E+01	
7(1	29	728.02	723 -	731	727.91	3.31E+01	27.74	9.59E+01	BI-212
	30	734.74	732 -	737	734.63	1.63E+01	17.06	4.55E+01	PA-234
	31	768.74	765 -	772	768.61	2.41E+01	27.57	1.08E+02	
	32	795.34	790 –	799	795.20	3.10E+01	26.78	8.40E+01	CS-134
	33	851.90	849 -	855	851.73	1.65E+01	17.53	4.10E+01	
М	34	857.83	856 -	865	857.66	1.21E+01	11.49	1.74E+01	• • • •
	35	861.01	856 -	865	860.84	3.37E+01	21.87	4.70E+01	TL-208
m	36	911.61	907 -	915	911.41	9.05E+01	27.78	6.30E+01	LU-172
	30	911.01	<i>301</i> –	913	211.41	J. 03D (01	27.70	0.002.01	AC-228
3.4	37	969.44	965 -	978	969.22	7.14E+01	25.26	8.68E+01	AC-228
M		973.00	965 -	978	972.78	1.62E+01	24.37	5.12E+01	
m	38		965 - 965 -	978	976.22	1.38E+01	15.17	2.08E+01	
m	39	976.44	979 -	970	984.07	2.98E+01	21.35	4.25E+01	V-48
•	40	984.30		1006	1003.12	1.70E+01	15.56	3.19E+01	
	41	1003.36	1000 -	1101	1003.12		17.06	3.90E+01	FE-59
	42	1098.37	1095 -	1128	1120.01	4.96E+01	22.81	6.56E+01	BI-214
М	43	1120.29	1115 -	1120		IOTAGE, P			SC-46
m	44	1126.05	1115 -	1128	1125.76	1.23E+01	15.91	3.39E+01	
M	45	1148.36	1145 -	1163	1148.06	2.19E+01	13.08	1.89E+01	
m	46	1155.50	1145 -	1163	1,155.20	1.69E+01	18.59	3.22E+01	
m	47	1160.24	1145 -	1163	1159.94	1.40E+01	16.37	3.08E+01	
М	48	1232.21	1230 -	1247	1231.87	1.20E+01	10.95	2.40E+01	
m	49	1237.82	1230	1247	1237.49	3.29E+01	20.49	4.80E+01	CO-56
	50	1282.37	1277 -	1288	1282.02	3.14E+01	20.40	3.73E+01	
	51	1381.53	1374 -	1390	1381.14	2.60E+01	19.20	2.40E+01	
	52	1460.80	1455 -	1466	1460.38	3.35E+02	39.75	3.06E+01	K-40
	53	1496.40	1492 -	1499	1495.97	9.15E+00	9.17	7.69E+00	
	54	1510.05	1507 -	1512	1509.61	5.78E+00	7.35	6.44E+00	
	55	1590.33	1583 -	1595	1589.86	1.97E+01	13.73	1.26E+01	
	56	1629.99	1626 -	1633	1629.51	1.27E+01	10.00	8.59E+00	
	57	1764.39	1757 -	1767	1763.86	5.60E+01	14.97	0.00E+00	BI-214
	58	1776.37	1772 -	1777	1775.83	6.00E+00	4.90	0.00E+00	
	59	1845.91	1840 -	1849	1845.35	1.07E+01	8.77	4.54E+00	
	60	1985.77	1982 -	1987	1985.17	6.00E+00	4.90	0.00E+00	
	61	2118.89	2114 -	2122	2118.25	1.20E+01	6.93	0.00E+00	
	62	2203.33	2198 -	2207	2202.66	1.12E+01	10.68	9.63E+00	BI-214
	63	2217.47	2212 -	2220	2216.80	1.00E+01	6.32	0.00E+00	
	64	2283.78	2277 -	2286	2283.09	6.17E+00	7.81	5.67E+00	
	- 65	2614.36	2610 -	2517	2613.58	3.60E+01	12.00	0.00E+00	TL-208
	. 05	2014.00	2010	المالية بت	2.020100	0,000.00		-	

1603102-05

SEDIMENT 2016-03-16B

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

PEAK EFFICIENCY REPORT

Peak Analysis Performed on

: 4/13/2016 10:12:24AM

	Peak No.	Energy (keV)	Net Peak Area	Net Area Uncertainty	Peak Efficiency	Efficiency Uncertainty
	1	46.96	1.63E+02	62.36	1.53E-02	1.58E-03
M	2	74.94	2.39E+02	77.39	2.36E-02	2.09E-03
m	3	77.63	4.97E+02	84.36	2.39E-02	2.18E-03
	4	93.14	3.61E+02	90.73	2.44E-02	2.41E-03
	5	99.10	4.69E+01	55.05	2.43E-02	2.27E-03
	6	105.27	6.93E+01	56.44	2.41E-02	2.12E-03
	7	143.61	7.87E+01	68.93	2.14E-02	1.62E-03
	8	186.10	1.89E+02	72.68	1.83E-02	1.42E-03
	9	211.75	1.05E+02	101.67	1.67E-02	1.30E-03
M	10	238.90	4.87E+02	60.88	1.52E-02	1,18E-03
m	11	241.86	1.40E+02	62.37	1.51E-02	1.17E-03
•••	12	270.57	6.83E+01	44.16	1.38E-02	1.04E-03
	13	295.68	1.83E+02	48.57	1.28E-02	9.73E-04
	14	309.46	4.19E+01	42.87	1.23E-02	9.54E-04
M	15	338.74	1.15E+02	34.37	1.14E-02	9.12E-04
m	16	342.11	3.81E+01	33.84	1.13E-02	9.08E-04
M	1.7	348.34	2.93E+01	20.88	1.12E-02	8.99E-04
m	18	352.37	3.76E+02	44.51	1.10E-02	8.93E-04
	19	464.39	6.23E+01	47.91	8./ ₄ E-03	7.65E-04
	20	477.97	5.00E+01	35.40	8.49E-03	7.51E-04
	21	511.71	1.58E+02	42.18	8.00E-03	7.17E-04
	22	549.41	3.10E+01	22.56	7.52E-03	6.80E-04
M	23	579.04	1.28E+01	10.30	7.18E-03	6.50E-04
m	24	583.85	1.21E+02	32.29	7.13E-03	6.45E-04
	25	609.72	2.34E+02	44.61	6.87E-03	6.20E-04
M	26	698.53	2.62E+01	16.11	6.10E-03	5.38E-04
m	27	702.53	2.47E+01	21.15	6.07E-03	5.34E-04
m	28	710.67	1.94E+01	18.85	6.01E-03	5.28E-04
	29	728.02	3.31E+01	27.74	5.89E-03	5.14E-04
	30	734.74	1.63E+01	17.06	5.84E-03	5.08E-04
	31	768.74	2.41E+01	27.57	5.61E-03	4.80E-04
	32	795.34	3.10E+01	26.78	5.45E-03	4.59E-04
	33	851.90	1.65E+01	17.53	5.14E-03	4.12E-04
M	34	857.83	1.21E+01	11.49	5.11E-03	4.07E-04

1603102-05

SEDIMENT 2016-03-16B

	Peak No.	Energy (keV)	Net Peak Area	Net Area Uncertainty	Peak Efficiency	Efficiency Uncertainty
		0.61 01	2 375.01	21.87	5.09E-03	4.05E-04
m	35	861.01	3.37E+01	27.78	4.85E-03	3.72E-04
	36	911.61	9.05E+01	25.26	4.60E-03	3.61E-04
M	37	969.44	7.14E+01	24.37	4.59E-03	3.61E-04
m	38	973.00	1.62E+01	15.17	4.57E-03	3.60E-04
m	39	976.44	1.38E+01	21.35	4.54E-03	3.59E-04
	40	984.30	2.98E+01	15.56	4.47E-03	3.55E-04
1	41	1003.36	1.70E+01	17.06	4.47E-03	3.37E-04
	42	1098.37	1.65E+01		4.14E-03 4.08E-03	3.33E-04
M	43	1120.29	4.96E+01	22.81	4.06E-03	3.32E-04
m	44	1126.05	1.23E+01	15.91	3.99E-03	3.28E-04
M	45	1148.36	2.19E+01	13.08	3.99E-03 3.97E-03	3.27E-04
m	46	1155.50	1.69E+01	18.59		3.26E-04
m	47	1160.24	1.40E+01	16.37	3.96E-03	3.11E-04
M	48	1232.21	1.20E+01	10.95	3.77E-03	3.09E-04
m	49	1237.82	3.29E+01	20.49	3.76E-03	3.00E-04
	50	1282.37	3.14E+01	20.40	3.65E-03	
	51	1381.53	2.60E+01	19.20	3.44E-03	2.81E-04
	52	1460.80	3.35E+02	39.75	3.29E-03	2.69E-04
	53	1496.40	9.15E+00	9.17	3.23E-03	2.64E-04
	54	1510.05	5.78E+00	7.35	3.21E-03	2.62E-04
	55	1590.33	1.97E+01	13.73	3.08E-03	2.50E-04
	56	1629.99	1.27E+01	10.00	3.03E-03	2.44E-04
	57	1764.39	5.60E+01	14.97	2.86E-03	2.24E-04
	58	1776.37	6.00E+00	4.90	2.34E-03	2.22E-04
	59	1845.91	1.67E+01	8.77	2.77E-03	2.13E-04
	60	1985.77	6.00E+00	4.90	2.63E-03	2.13E-04
	61	2118.89	1.20E+01	6.93	2.52E-03	2.13E-04
	62	2203.33	1.12E+01	10.68	2.46E-03	2.13E-04
	63	2217.47	1.00E+01	6.32	2.45E-03	2.13E-04
	64	2283.78	6.17E+00	7.81	2.41E-03	2.13E-04
	65	2614.36	3.60E+01	12.00	2.24E-03	2.13E-04

M = First peak in a multiplet region m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000 sigma

BACKGROUND SUBTRACT REPORT

Peak Analysis Performed on

: 4/13/2016 10:12:24AM

Env. Background File

: \\CR-GAMMA1\ApexRoot\Countroom\Data\0000035178,CNF

Analysis Report for 1603102-05

	Peak	Energy	Original	Orig. Area	Ambient	Backgr.	Subtracted	Subtracted
	No.	(keV)	Area	Uncertainty	Background	Uncert.	Area	Uncert.
-	1	46.96	1.63E+02	62.36	3.04E+01	2.01E+01	1.32E+02	6.55E+01
Μ	2	74.94	2.39E+02	77.39	•		2.39E+02	7.74E+01
m	3	77.63	4.97E+02	84.36			4.97E+02	8.44E+01
	4	93.14	3.61E+02	90.73	7.72E+01	4.69E+00	2.84E+02	9.09E+01
	5	99.10	4.69E+01	55.05	•	•	4.69E+01	5.51E+01
	6	105.27	6.93E+01	56.44	*.		6.93E+01	5.64E+01
	7	143.61	7.87E+01	68.93			7.87E+01	6.89E+01
	8	186.10	1.89E+02	72.68	3.82E+01	5.87E+00	1.51E+02	7.29E+01
	9	211.75	1.05E+02	101.67	•	•	1.05E+02	1.02E+02
М	10	238.90	4.87E+02	60.88	1.06E+01	5.71E+00	4.76E+02	6.11E+01
m	11	241.86	1.40E+02	62.37		**	1.40E+02	6.24E+01
	12	270.57	6.83E+01	44.16			6.83E+01	4.42E+01
	13	295.68	1.83E+02	48.57			1.83E+02	4.86E+01
	14	309.46	4.19E+01	42.87			4.19E+01	4.29E+01
М	15	338.74	1.15E+02	34.37			1.15E+02	3.44E+01
m	16	342.11	3.81E+01	33.84			3.81E+01	3.38E+01
M	17	348.34	2.93E+01	20.88			2.93E+01	2.09E+01
m	18	352.37	3.76E+02	44.51	0.00E÷00	0.00E+00	3.76E+02	4.45E+01
	19	464.39	6.23E+01	47.91			6.23E+01	4.79E+01
	20	477.97	5.00E+01	35.40			5.00E+01	3.54E+01
	21	511.71	1.58E+02	42.18	5.95E+01	4.92E+00	9.85E+01	4.25E+01
	22	549.41	3.10E+01	. 22.56			3.10E+01	2.26至+01
М	23	579.04	1.28E+01	10.30			1.28E+01	1.03E+01
m	24	583.85	1.21E+02	32.29	5.06E+00	2.98E+00	1.16E+02	3.24E+01
	25	609.72	2.34E+02	44.61	2.01E+00	3.84E+00	2.32E+02	4.48E+01
М	26	698.53	2.62E+01	16.11			2.62E+01	1.61E+01
m	27	702.53	2.47E+01	21.15			2.47E+01	2.12E+01
m	28	710.67	1.94E+01	18.85			1.94E+01	1.89E+01
	29	728.02	3.31E+01	27.74			3.31E+01	2.77E+01
	30	734.74	1.63E+01	17.06			1.63E+01	1.71E+01
	31	768.74	2.41E+01	27:57			2.41E+01	2.76E+01
	32	795.34	3,10E+01	26.78			3.10E+01	2.68E+01
	33	851.90	1.65E+01	17.53			1.65E+01	1.75E+01
М	34	857.83	1.21E+01	11.49			1.21E+01	1.15E+01
m	35	861.01	3.37E+01	21.87			3.37E+01	2.19E+01
	36	911.61	9.05E+01	27.78	2.99E+00	2.93E+00	8.75E+01	2.79E+01
M	37	969.44	7.14E+01	25.26			7.14E+01	2.53E+01
m	38	973.00	1.62E+01	24.37		·	1.62E+01	2.44E+01
m	39	976.44	1.38E+01	15.17			1.38E+01	1.52E+01
	40	984.30	2.98E+01	21.35			2.98E+01	2.14E+01
	41	1003.36	1.70E+01	15.56			1.70E+01	1.56E+01
	42	1098.37	1.65E+01	17.06			1.65E+01	1.71E+01
Μ	43	1120.29	4.96E+01	22.81			4.96E+01	2.28E+01
m	44	1126.05	1.2SE+01	15.91		•	1.23E+01	1.59E+01
M	45	1148.36	2.19三+01	13.08	•		2.19E+01	1.31E+01
m	46	1155.50	1.69E+01	18.59			1.69E+01	1.86E+01
m	47	1160.24	1.40E+01	16.37			1.40E+01	1.64E+01
Μ	48	1232.21	1.20E+01	10.95			1.20E+01	1.10E+01
m	49	1237.82	3.29E+01	20.49			3.29E+01	2.05E+01
	50	1282.37	3.14E+01	20.40			3.14E+01	2.04E+01
	51	1381.53	2.60E+01	19.20			2.60E+01	1.92E+01
	52	1460.80	3.35E+02	39.75			3.35E+02	3.97E+01
	53	1496.40	9.15E+00	9.17			9.15%+00	9.17E+00
	54	1510.05	5.78E+00	7.35			5.78E+00	7.35E+00

1603102-05

SEDIMENT 2016-03-16B

Peak No.	Energy (keV)	Original Area	Orig. Area Uncertainty	Ambient Background	Backgr. Uncert.	Subtracted Area	Subtracted Uncert.
55	1590.33	1.97E+01	13.73			1.97E+01	1.37E+01
56	1629.99	1.27E+01	10.00			1.27E+01	1.00E+01
57	1764.39	5.60E+01	14.97			5.60E+01	1.50E+01
58	1776.37	6.00E+00	4.90			6.00E+00	4.90E+00
59	1845.91	1.07E+01	8.77			1.07E+01	8.77E+00
60	1985.77	6.00E+00	4.90			6.00E+00	4.90E+00
61	2118.89	1.20E+01	6.93			1.20E+01	6.93E+00
62	2203.33	1.12E+01	10.68			1.12E+01	1.07E+01
63	2217.47	1.00E+01	6,32			1.00E+01	6.32E+00
64	2283.78	6.17E+00	7.81			6.17E+00	7.81E+00
65	2614.36	3.60E+01	12.00			3.60E+01	1.20E+01

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

AREA CORRECTION REPORT REFERENCE PEAK / BKG. SUBTRACT

Peak Analysis Performed on

: 4/13/2016 10:12:24AM

Ref. Peak Energy

: 0.00

Reference Date

Peak Ratio

: 0.00

: 0.00

Background File

Uncertainty

: \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035178.CNF

Corrected Area is: Original * Peak Ratio - Background

	Peak No.	Energy (keV)	Original Area	Orig. Area Uncertainty	Ambient Background	Backgr. Uncert.	Corrected Area	Corrected Uncert.
	1	46.96	1.63E+02	62.36	3.04E+01	2.01E+01	1.32E+02	6.55E+01
М	. 2	74.94	2.39E+02	77.39			2.39E+02	7.74E+01
m	3	77.63	4.97E+02	84.36			4.97E+02	8.44E+01
•••	4	93.14	3.61E+02	90.73	7.72E+01	4.69E+00	2.84E+02	9.09E+01
	5	99.10	4.69E+01	55.05			4.69E+01	5.51E+01
	6	105.27	6.93E+01	56.44			6.93E+01	5.64E+01
	7	143.61	7.87E+01	68.93			7.87E+01	6.89E+01
	8	186.10	1.89E+02	72,68	3.82E+01	5.87E+00	1.51E+02	7.29E+01
	9	211.75	1.05E+02	101.67			1.05E+02	1.02E+02
М	10	238.90	4.87E+02	60.88	1.06E+01	5.71E+00	4.76E+02	6.11E+01
m	11	241.86	1.40E+02	62.37			1.40E+02	6.24E+01
111	12	270.57	6.83E+01	44.16			6.83E+01	4.42E+01
	13	295.68	1.83E+02	48.57			1.83E+02	4.86E+01
	14	309.46	4.19E+01	42.87			4.19E+01	4.29E+01
М	15	338.74	1.15E+02	34.37			1.15E+02	3.44E+01
m 1,1	16	342.11	3.81E+01	33.84			3.81E+01	3.38E+01
M	17	348.34	2.93E+01	20.88			2.93E+01	2.09E+01

Analysis Report for 1603102-05

	Peak No.	Energy (keV)	Original Area	Orig. Area Uncertainty	Ambient Background	Backgr. Uncert.	Corrected Area	Corrected Uncert.
m	18	352.37	3.76E+02	44.51	. 0.00E+00	C.00E+00	3.76E+02	4.45E+01
	19	464.39	6.23E+01	47.91	•		6.23E+01	4.79E+01
	20	477.97	5.00E+01	35.40		1 m	5.00E+01	3.54E+01
	21	511.71	1.58E+02	42.18	5.95E+01	4.92E+00	9.85E+01	4.25E+01
	22	549.41	3.10E+01	22.56		•	3.10E+01	2.26E+01
M	23	579.04	1.28E+01	10.30			1.28E+01	1.03E+01
m	24	583.85	1.21E+02	32.29	5.06E+00	2.98E+00	1.16E+02	3.24E+01
	25	609.72	2.34E+02	44.61	2.01E+00	3.84E+00	2.32E+02	4.48E+01
Μ	26	698.53	2.62E+01	16.11	•	-	2.62E+01	1.61E+01
m	27	702.53	2.47E+01	21.15		. 6.0	2.47E+01	2.12E+01
m	28	710.67	1.945+01	18.85			1.94E+01	1.89E+01
	29	728.02	3.31E+01	27.74		•	3.31E+01	2.77E+01
	30	734.74	1.63E+01	17.06			1.63E+01	1.71E+01
	31	768.74	2.41E+01	27.57			2.41E+01	2.76E+01
	32	795.34	3.10E+01	26.78			3.10E+01	2.68E+01
	33	851.90	1.65E+01	17.53			1.65E+01	1.75E+01
Μ	34	857.83	1.21E+01	11.49			1.21E+01	1.15E+01
m	35	861.01	3.37E+01	21.87			3.37E+01	2.19E+01
	36	911.61	9.05E+01	27.78	2.99E+00	2.93E+00	8.75E+01	2.79E+01
Μ	37	969.44	7.14E+01	25.26			7.14E+01	2.53E+01
m	38	973.00	1.62E+01	24.37			1.62E+01	2.44E+01
m	39	976.44	1.38E+01	15.17	i.		1.38E+01	1.52E+01
	40	984.30	2.98E+01	21.35			2.98E+01	2.14E+01 1.56E+01
	41	1003.36	1.70E+01	15.56			1.70E+01 1.65E+01	1.71E+01
	42		1.65E+01	17.06			4.96E+01	2.28E+01
Μ		1120.29	4.96E+01	22.81			1.23E+01	1.59E+01
m		1126.05	1.23E+01	15.91			2.19E+01	1.31E+01
М		1148.36	2.19E+01	13.08			1.69E+01	1.86E+01
m		1155.50	1.69E+01	18.59			1.40E+01	1.64E+01
m		1160.24	1.40E+01	16.37			1.40E+01	1.10E+01
M		1232.21	1.20E+01	10.95			3.29E+01	2.05E+01
m	49		3.29E+01	20.49 20.40			3.14E+01	2.04E+01
	50		3.14E+01	19.20			2.60E+01	1.92E+01
		1381.53	2.60E+01	39.75			3.35E+02	3.97E+01
		1460.80	3.35E+02 9.15E+00	9.17			9.15E+00	9.17E+00
		1496.40	5.78E+00	7.35			5.78E+00	7.35E+00
		1510.05	1.97E+01	13.73			1.97E+01	1.37E+01
		1590.33	1.97E+01 1.27E+01	10.00			1.27E+01	1.00E+01
		1629.99	5.60E+01	14.97			5.60E+01	1.50E+01
		1764.39 1776.37	6.00E+00	4.90			6.00E+00	4.90E+00
		1845.91	1.07E+01	8.77			1.07E+01	8.77E+00
		1985.77	6.00E+00	4.90			6.00E+00	4.90E+00
		2118.89	1.20E+01	6.93			1.20E+01	6.93E+00
		2203.33	1.12E+01	10.68			1.12E+01	1.07E+01
		2203.33	1.00E+01	6.32			1.00E+01	6.32E+00
		2283.78	6.17E+00	7.81			6.17E+00	7.81E+00
		2614.36	3.60E+01	12.00			3.60E+01	1.20E+01
	00		0.000.00					

1603102-05

SEDIMENT 2016-03-16B

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2,000sigma

NUCLIDE IDENTIFICATION REPORT

Nuclide Library Used

: \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB

IDENTIFIED NUCLIDES

Nuclide Name	ld Confidence	Energy (keV)		Yield(%)	Activity (pCi/grams)	Activity Uncertainty
BE-7	0.975	477.59	*	10.42	· 1.12E+00	8.02E-01
K-40	1.000	1460.81	*	10.67	1.32E+01	1.93E+00
GA-67	0.390	93.31	*	35.70	1.67E+02	6.38E+02
		208.95		2.24		
		300.22		16.00		
TL-208	0.955	583.14	×	30.22	7.47E-01	2.19E-01
	i e	860.37	*	4.48	2.05E+00	1.34E+00
		2614.66	*	35.85	6.22E-01	2.16E-01
PB-210	0.967	46.50	*	4.25	2.84E+00	1.44E+00
BI-212	0.680	727.17	۶	11.80	6.60E-01	5.57E-01
	•	1620.62		2.75		
PB-212	0.885	238.63	*	44.60	9.74E-01	1.46E-01
		300.09		3,41		
BI-214	0.977	609.31	*	46.30	1.01E+00	2.16E-01
		1120.29	*	15.10	1.12E+00	5.22E-01
		1764.49	*	15.80	1.72E+00	4.79E-01
* 1		2204.22	*	4.98	1.26E+00	1.21E+00
PB-214	0.967	295.21	*	19.19	1.03E+00	2.85E-01
		351.92	*	37.19	1.27E+00	1.82E-01
RA-224	0.883	240.98	*	3.95	3.26E+00	1.48E+00
RA-226	0.998	186.21	*	3.28	3.48E+00	6.60E+00
AC-228	0.967	338.32	*	11.40	1.23E+00	3.79E-01
1		911.07	*	27.70	9.03E-01	2.97E-01
		969.11	*	16.60	1.30E+00	4.70E-01
AM-243	0.989	74.67	*	66.00	2.13E-01	7.13E-02

^{* =} Energy line found in the spectrum.

Energy Tolerance: 1.000 keV

Nuclide confidence index threshold = 0.30

Errors quoted at 2.000sigma

^{- =} Manually added nuclide.

^{? =} Manually edited nuclide.

SEDIMENT 2016-03-16B

UNIDENTIFIED PEAKS

Peak Locate Performed on

: 4/13/2016 10:12:24AM

Peak Locate From Channel
Peak Locate To Channel

: 1 : 4096

Pe	ak No.	Energy (keV)	Peak Size (CPS)	Peak CPS (%) Uncertainty	Peak T <u>y</u> pe	Tolerance Nuclide
m	3	77.63	1.37926E-01	8.50	Tol.	TI-44
	5	99.10	1.30349E-02	58.66	D-Esc	
	6	105.27	1.92526E-02	40.71	Tol	EU-155
					_	NP-239
	7	143.61	2.18713E-02	43.78	Tol.	U-235
	9	211.75	2.92556E-02	48.27		
	12	270.57	1.89794E-02	32.31		
	14	309.46	1.16252E-02	51.22	_	
m	16	342.11	1.05713E-02	44.46	Sum	
M	17	348.34	8.14869E-03	35.59		
	19	464.39	1.72936E-02	38.48		
	21	511.71	2.73688E-02	21.55		
	22	549.41	8.61111E-03	36.39		
M	23	579.04	3.55030E-03	40.28		
M	26	698.53	7.26792E-03	30.78	0	
m	27	702.53	6.85775E-03	42.84	Sum	
m	28	710.67	5.39317E-03	48.56	m – 1	77 72 A
	30	734.74	4.51567E-03	52.47	Tol.	PA-234
	31	768.74	6.69872E-03	57.16	C	
	32	795.34	8.60921E-03	43.20	Sum	
	33	851.90	4.58709E-03	53.07	Sum	•
M	34	857.83	3.35604E-03	47.55		
m	38	973.00	4.50222E-03	75.19		
m	39	976.44	3.82767E-03	55.03	m o 1	V-48
	40	984.30	8.26797E-03	35.87	Tol.	V-40
	41	1003.36	4.73485E-03	45.66	Sum	
	42	1098.37	4.58333E-03	51.69	Sum	
m	44	1126.05	3.41036E-03	64.78		
M	45	1148.36	6.08893E-03	29.83 54.89	Sum	
m	46	1155.50	4.70521E-03	58.36	. Sum	
m	47	1160.24	3.89615E-03	45.47		
M	48	1232.21	3.34641E-03	31.19	Tol.	CO-56
m	49	1237.82	9.12701E-03	32.52	101.	CO 30
	50	1282.37	8.71111E-03	36.91		
	51	1381.53	7.22588E-03	50.06	Sum	
	53	1496.40	2.54274E-03 1.60494E-03	63.59	Sun	
	54	1510.05		34.86		
	55	1590.33	5.47008E-03	39.35		
	56	1629.99	3.52941E-03	40.82		
	58	1776.37	1.66667E-03 2.98077E-03	40.89		
	59	1845.91	1.66667E~03	40.82		
	60	1985.77	T * 00001E-03	40.02		

1603102-05

SEDIMENT 2016-03-16B

Peak No.	Energy (keV)	Feak Size (CPS)	Peak CPS (%) Uncertainty	Peak Type	Tolerance Nuclide	
61	2118.89	3.3333E-03	28.87			
63	2217.47	2.77778E-03	31.62			
64	2283.78	1.71296E-03	63.33			

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

NUCLIDE IDENTIFICATION REPORT

Nuclide Library Used

: \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB

IDENTIFIED NUCLIDES

Nuclide Name	ld Confidence	Energy (keV)		Yield(%)	Activity (pCi/grams)	Activity Uncertainty
BE-7	0.97	477.59	*	10.42	1.12E+00	8.02E-01
K-40	1.00	1460.81	*	10.67	1.32E+01	1.93E+00
GA-67	0.39	93.31	*	35.70	1.67E+02	6.38E+02
011 0.		208.95		2.24		
		300.22		16.00		
TL-208	0.95	583.14	*	30.22	7.47E-01	2.19E-01
1.2 2 4		860.37	*	4.48	2.05E+00	1.34E+00
	•	2614.66	*	35.85	6.22E-01	2.16E-01
PB-210	0.96	46.50	*	4.25	2.84E+00	1.44E+00
BI-212	0.68	727.17	*	11.80	6.60E-01	5.57E-01
		1620.62		2.75		
PB-212	0.88	238.63	*	44.60	9.74E-01	1.46E-01
	1	300.09		3.41		
BI-214	0.97	609.31	*	46.30	1.01E+00	2.16E-01
		1120.29	*	15.10	1.12E+00	5.22E-01
		1764.49	*	15.20	1.72E+00	4.79E-01
		2204.22	٠.	. 4.98	1.26E+00	1.21E+00
PB-214	0.96	295.21	*	19.19	1.03E+00	2.85E-01
		351.92	*	37.19	1.27E+00	1.82E-01
RA-224	0.88	240.98	*	3.95	3.26E+00	1.48E+00
RA-226	0.99	186.21	*	3.28	3.48E+00	6.60E+00
AC-228	0.96	338.32	*	11.40	1.23E+00	3.79E-01
• * *		911.07	*	27.70	9.03E-01	2.97E-01
		969.11	*	16.60	1.30E+00	4.70E-01
AM-243	0.98	74.67	*	66.00	2.13E-01	7.13E-02

1603102-05

SEDIMENT 2016-03-16B

- * = Energy line found in the spectrum.
- = Manually added nuclide.
- ? = Manually edited nuclide.
- @ = Energy line not used for Weighted Mean Activity

Energy Tolerance: 1.000 keV

Nuclide confidence index threshold = 0.30

Errors quoted at 2.000sigma

INTERFERENCE CORRECTED REPORT

Nuclide Name	Nuclide Id Confidence	Wt mean Activity (pCi/grams)	Wt mean Activity Uncertainty	Comments
BE-7	0.975	1.12E+00	8.02E-01	
K-40	1.000	1.32E+01	1.93E+00	
GA-67	0.390	1,67E+02	6.38E+02	
TL-208	0.955	7.01E-01	1.53E-01	
PB-210	0.967	2.84E+00	1.44E+00	
BI-212	0.680	6.60E-01	5.57E-01	
PB-212	0.885	9.74E-01	1.46E-01	
BI-214	0.977	1.13E+00	1.82E-01	
PB-214	0.967	1.20E+00	1.53E-01	
RA-224	0.883	3.26E+00	1.48E+00	
RA-226	0.998	3.48E+00	6.60E+00	
AC-228	0.967	1.08E+00	2.09E-01	
AM-243	0.989	2.13E-01	7.13E-02	

- ? = nuclide is part of an undetermined solution
- X = nuclide rejected by the interference analysis
- @ = nuclide contains energy lines not used in Weighted Mean Activity

Errors quoted at 2.000sigma

1603102-05

SEDIMENT 2016-03-16B

UNIDENTIFIED PEAKS

Peak Locate Performed on

: 4/13/2016 10:12:24AM

Peak Locate From Channel
Peak Locate To Channel

: 1 : 4096

Pe	ak No.	Energy (keV)	Peak Size (CPS)	Peak CPS (%) Uncertainty	Peak Type	Tolerance Nuclide	
m	3	77.63	1.37926E-01	8.50	Tol.	TI-44	
	5	99.10	1.30349E-02	58.66	D-Esc		
	6	105.27	1.92526E-02	40.71	Tol.	EU-155	
						NP-239	
	7	143.61	2.18713E-02	43.78	Tol.	U-235	
	9	211.75	2.92556E-02	48.27			
	12	270.57	1.89794E-02	32.31			
	14	309.46	1.16252E-02	51.22			
m	16	342.11	1.05713E-02	44.46	Sum		
М	17	348.34	8.14869E-03	35.59			
	19	464.39	1.72936E-02	38.48			
	21	511.71	2.73698E-02	21.55			
	.22	549.41	8.61111E-03	36.39			
M	23	579.04	3.55030E-03	40.28			
М	26	698.53	7.26792E-03	30.78			
m	27	702.53	6.85775E-03	42.84	Sum		
m	28	710.67	5.39317E-03	48.56			
	30	734.74	4.51567E-03	52.47	Tol.	PA-234	
	31	768.74	6.69872E-03	57.16			
	32	795.34	8.60921E-03	43.20	Sum		
	33	851.90	4.58709E-03	53.07	Sum		
M	34	857.83	3.35604E-03	47.55			
m	38	973.00	4.50222E-03	75.19			
m	39	976.44	3.82767E-03	55.03			
	40	984.30	8.26797E-03	35.87	Tol.	V-48	
	41	1003.36	4.73485E-03	45.66			
	42	1098.37	4.58333E-03	51.69	Sum		
m	44	1126.05	3.41036E-03	64.78			
M	45	1148.36	6.08893E-03	29.83			
m	46	1155.50	4.70521E-03	54.89	Sum		
m	47	1160.24	3.89615E-03	58.36			
M	48	1232.21	3.34641E-03	45.47			
m	49	1237.82	9.12701E-03	31.19	Tol.	CO-56	
	50	1282.37	8.71111E-03	32.52			
	51	1381.53	7.22588E-03	36.91			
	- -						

1603102-05

SEDIMENT 2016-03-16B

Peak No.	Energy (keV)	Peak Size (CPS)	Peak CPS (%) Uncertainty	Peak Type	Tolerance Nuclide
53	1496.40	2.54274E-03	50.06	Sum	
54	1510.05	1.60494E-03	63.59		
55	1590.33	5.47008E-03	34.86		
56	1629.99	3.52941E-03	39.35		
58	1776.37	1.66667E-03	40.82		
59	1845.91	2,98077E-03	40.89		
60	1985.77	1.66667E-03	40.82		
61	2118.89	3.33333E-03	28.87		
63	2217.47	2.77778E-03	31.62		
64	2283.78	1.71296E-03	63.33		

M = First peak in a multiplet region

NUCLIDE MDA REPORT

	Nuclide Name	Energy (keV)		Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
	BE-7	477.59	*	10.42	1.12E+00	1.26E+00	1.26E+00	
	NA-22	1274.54		99.94	2.47E-02	9.85E-02	9.85E-02	
	NA-24	1368.53		99.99	4.71E+11	1.19E+12	2.49E+12	
	3.20 – 1	2754.09		99.86	1.61E+11		1.19E+12	
	AL-26	1808.65		99,76	-1.09E-02	6.49E-02	6.49E-02	
-	K-40	1460.81	*	10.67	1.32E+01	1,12E+00	1.12E+00	
	@ AR-41	1293.64		99.16	1.00E+26	1.00E+26	i.00E+26	
-	TI-44	67.88		94.40	-2.01E-02	6.97E-02	6.97E-02	
-	SC-46	78.34 889.25		96.00 99.98	1.84E-01 1.21E-02	1.09E-01	8.65E-02 1.09E-01	
-	V-48	1120.51 983.52		99.99	2.55E-01 1.37E-01	3.13E-01	1.92E-01 3.13E-01	
F	CR-51	1312.10 320.08		97.50 9.83	-1.73E-01 -2.67E-01	1.33E+00	3.32E-01 1.33E+00	
-	MN-54	834.83		99.97	-7.39E-04	9.27E-02	9.27E-02	
ŀ	CO-56	846.75		99.96	-2.26E-02	1.05E-01	1.05E-01	
		1037.75 1238.25		14.03 67.00	-3.63E-01 1.64E-01	•	7.68E-01 2.64E-01	

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

1603102-05

	Nuclide Name	Energy (keV)	Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
	GO 5.6	1771 46	15.51	-2.36E-01	1.05E-01	4.82E-01	
	CO-56	1771.40 2598.48	16.90	-2.36E-01	1.000E-01	3.43E-01	
+	CO-57	122.06	85.51	•	5.97E-02	5.97E-02	
•		136.48	10.60	6.40E-03	- · · ·	4.95E-01	
+	CO-58	810.76	99.40	-4.82E-02	1.03E-01	1.03E-01	
+	FE-59	1099.22	56.50	5.48E-02	2.72E-01	2.72E-01	
		1291.56	43.20	1.53E-01		3.54E-01	
+	CO-60	1173.22	100.00	-1.41E-02	9.43E-02	9.43E-02	
		1332.49	100.00	-2.91E-02		9.71E-02	
+	ZN-65	1115.52	50.75	-6.24È-03	1.88E-01	1.88E-01	
+	GA-67	93.31	* 35.70	1.67E+02	8.35E+01	ð.35E+01	
		208.95	2.24	7.93E+02		1.12E+03	
		300.22	16.00	4.70E+01	0.677	1.66E+02	
+	SE-75	121.11	16.70	-3.08E-02	9.67E-02	3.35E-01	
		136.00	59.20	1.72E-02		9.67E-02 1.25E-01	
		264.65	59.80 25.20	2.96E-02 1.19E-01		3.33E-01	
		279.53 400.65	11.40	-1.82E-01		7.31E-01	
+	RB-82	776.52	13.00	2.78E-01	1.30E+00	1.30E+00	
+	RB-83	520.41	46.00	-2.49E-02	1.73E-01	1.73E-01	
	112 00	529.64	30.30	-1.74E-01		2.88E-01	
		552.65	16.40	-5.89%-02	÷	5.52E-01	
+	KR-85	513.99	0.43	3.34E+01	2.35E+01	2.35E+01	•
+	SR-85	513.99	99.27	1.96E-01	1.38E-01	1.38E-01	5
+	Y-88	898.02	93.40	2.41E-02	7.89E-02	1.23E-01	
		1836.01	99.38	-1.40E-02		7.89E-02	
+	NB-93M	16.57	9.43	-2.34E+01	8.01E+01	8.01E+01	
+	NB-94	702.63	100.00	-2.68E-03	9.06E-02	9.06E-02	
		871.10	100.00	1.33E-02		9.23E-02	
+	NB-95	765.79	99.81	3.61E-03	1.83E-01	1.83E-01	
+	NB-95M	235.69	25.00	9.81E+01	8.38E+01	8.38E+01	
+	ZR-95	724.18	43.70	9.85E-03	1.87E-01		
		756.72	55.30	-6.74E-03	5 5400	1.87E-01	
. +	MO-99	181.06	6.20	2.67E+01	6.51E+02		
		739.58	12.80	3.48E+01		6.51E+02 1.84E+03	
	DII 102	778.00	4.50 89.00	-5.81E+02 5.33E-02	1.29E-01		
+	RU-103	497.08	9.80	8.84E-02	8.15E-01		
+	RU-106	621.84	89.90	-1.02E-02	8.19E-02		
+	AG-108M	* The state of the			0.195 02	9.97E-02	
		614.37 722.95	90.40 90.50	2.10E-02 6.35E-03		9.22E-02	
+	CD-109	88.03	3.72	-1.09E+00			
+	AG-110M		93.14	-4.92E-02			
1	AG-TIOM	677.61	10.53	-4.21E-01		6.96E-01	
		706.67	16.46	-4.41E-01		5.22E-01	
		763.93	21.98	1.69E-02		4.42E-01	
		884.67	71.63	-4.41E-02		1.27E-01	
		1384.27	23.94	1.01E-02		4.09E-01	

Analysis Report for

1603102-05

	Nuclide Name	Energy (keV)	Yield(%)	Activity (pCi/grams)	Nuclide idDA (pCi/grams)	Line MDA (pCi/grams)	
+	CD-113M	263.70	0.02	-1.67E+00	2.71E+02	2.71E+02	
+	SN-113	255.12	1.93	5.67E-02	1.22E-01	3.92E+00	
Т	2N-112	391.69	64.90	-9.33E-02	1.222 01	1.22E-01	
+	TE123M	159.00	84.10	1.11E-02	7.31E-02	7.31E-02	
+	SB-124	602.71	97.87	-4.95E-02	1.05E-01	1.05E-01	
Т	20-124	645.85	7.26	-4.26E-01	_ 1 0 0 0 0 0 -	1.39E+00	
		722.78	11.10	7.13E-02		1.03E+00	
		1691.02	49.00	-4.85E-02		2.10E-01	
+	I-125	35.49	6.49	-1.47E-01	2.77E+00	2,77E+00	
+	SB-125	176.33	6.89	-2.98E-01	2.39E-01	7.29E-01	
		427.89	29.33	-8.99E-02		2.39E-01	
		463.38	10.35	2.29E-01		8.20E-01	
		600.56	17.80	2.51E-01		4.78E-01	
		635.90	11.32	-1.94E-01	0 75- 01	6.84E-01	
+	SB-126	414.70	83.30	-4.71E-02	3.76E-01	3.99E-01	
		666.33	99.60	-2.89E-01		3.76E-01	
		695.00	99.60	9.05E-02 -8.12E-02		3.80E-01 7.05E-01	
4.	SN-126	720.50 87.57	53.80 37.00	-1.05E-01	1.70E-01	1.70E-01	
+		473.00	25.00	-5.77E±01	3.41E+01	4.15E+01	
+	SB-127	685.20	35.70	6.12E+00	J. 41B. O1	3.41E+01	,
		783.80	14.70	6.41E÷01		9.54E+01	
+	I-129	29.78	57.00	-1.04E-01	3.95E-01	3.95E-01	
•	. 4 113	33.60	13.20	1.11E-01		1.16E+00	
		39.58	7.52	-1.40E-01		1.36E+00	
+	I-131	284.30	6.05	2.93E-01	7.95E-01	1.28E+01	
		364.48	81.20	-5.38E-02		7.95E-01	
		636.97	7.26	-4.09E+00		1.15E+01	
		722.89	1.80	3.52E+00	0 647.01	5.10E+01	
+	TE-132	49.72	13.10	1.65E+01	2.64E+01	2.05E+02	
	100	228.16	88.00	-3.68E+00	1 66E-01	2.64E+01 1.76E-01	
+	BA-133	81.00	33.00	-6.96E-02	1.66E-01	3.66E-01	
		302.84	17.80 60.00	1.49E-01 -1.24E-03		1.66E-01	
+	I-133	356.01 529.87	86.30	-2.27E+08	3.75E+08	3.75E+08	
+	XE-133	81.00	38.00	-2.38E+00	6.03E+00	6.03E+00	
+	CS-134	563.23	8.38	-3.69E-01	8.60E-02	8.22E-01	
41	CD 134	569.32	15.43	-9.29E-02	*****	4,94E-01	
	•	604.70	97.60	9.39E-03		8.60E-02	
		795.84	85.40	8.705-02		1.18E-01	
		801.9ა	8.73	-6.47E-01		8.49E-01	
+	CS-135	268.24	16.00	9.96E-03	4.44E-01	4.44E-01	
+	@ I-135	1131.51	22,50	1.00E+26	1.00E+26		
	@	1260.41	28.60	1.00E+26		1.00E+26	
	0	1678.03	9.54	1.00E+26		1.00E+26	
+	CS-136	153.22	7.46	1.59E+00	3.33E-01		
		163.89	4.61	-4.93E-01		4.63E+00	
		176.55	13.56	-3.61E-01		1.61E+00	
		273.65	12.66	-1.69E÷00		2.38E+00	

1603102-05

	Nuclide Name	Energy (keV)	Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
	CS-136	340.57 818.50 1048.07 1235.34	48.50 99.70 79.60 19.70	1.38E+00 -5.58E-02 1.05E-01 1.43E+00	3.33E-01	7.59E-01 3.33E-01 4.86E-01 2.94E+00	
+	CS-137	661.65	85.12	1.27E-02	1.00E-01	1.00E-01	
+	LA-138	788.74	34.00	8.61E-02	1.45E-01	2.57E-01	
+	CE-139	1435.80 165.85	66.00 80.35	3.31E-03 -4.97E-05	7.11E-02	1.45E-01 7.11E-02	
+	BA-140	162.64	6.70	-1.60E+00	1.36E+00	3.30E+00	
+	I.A-140	304.84 423.70 437.55 537.32 328.77	4.50 3.20 2.00 25.00 20.50	-6.28E-01 3.95E+00 5.82E+00 2.17E-01 -6.56E-02	4.42E-01	6.22E+00 1.01E+01 1.68E+01 1.36E+00 1.59E+00	
	CE-141	487.03 815.85 1596.49 145.44	45.50 23.50 95.49 48.40	-3.23E-02 -1.47E-01 -3.91E-02 1.18E-01	1.99E-01	6.96E-01 1.49E+00 4.42E-01 1.99E-01	
+	CE-141 CE-143	57.36	11.80	1,28E+05	2.80E+05	7.01E+05	
т		293.26 664.55	42.00 5.20	2.16E+04 1.12E+06		2.80E+05 2.12E+06	
;+	CE-144	133.54	10.80	-1.38E-01	4.77E-C1 8.06E-C2	4.77E-01 2.11E-01	
+	PM-144 PM-145	476.78 618.01 696.49 36.85	42.00 98.60 99.49 21.70	1.63E-01 -1.71E-02 2.40E-02 -3.52E-01	2.98E-01	8.06E-02 9.02E-02 5.38E-01	
		37.36 42.30 72.40	39.70 15.10 2.31	1.77E-01 -1.47E-01 -6.14E+00		2.98E-01 5.88E-01 3.07E+00	
+	PM-146	453.90 735.90 747.13	39.94 14.01 13.10	-4.72E-02 2.74E-02 -1.81E-01	1.83E-01	1.83E-01 5.87E-01 5.83E-01	
+	ND-147	91.11 531.02	13.10	-4.49E-01 -1.91E+00		1.33E+00 3.07E+00	
÷	PM-149	285.90	3.10	5.53E+03	1.40E+04	1.40E+04	
+	EU-152	121.78 244.69 344.27 778.89	20.50 5.40 19.13 9.20	-7.12E-03 1.73E-01 -6.68E-01 -4.90E-01	2.33E~01	2.33E-01 1.50E+00 3.33E-01 7.80E-01	
. •		964.01 1085.78 1112.02 1407.95	10.40 7.22 9.60 14.94	2.39E-01 -1.23E-01 9.83E-02 -2.24E-01		1.10E+00 1.32E+00 1.01E+00 6.02E-01	
+	GD-153	97.43 103.18	31.30 22.20	-2.30E-01 -2.04E-01	1.65E-01	1.65E-01 2.23E-01	
+	EU-154	123.07 723.30 873.19 996.32	40.50 19.70 11.50 10.30	2.10E-02 2.93E-02 -2.58E-01 2.49E-01	1.20E-01		

1603102-05

	Nuclide Name	Energy (keV)		Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
						· · ·		
÷	EU-154	1004.76 1274.45		17.90 35.50	4.65E-02 6.87E-02	1.20E-01	5.35E-01 2.73E-01	
+	EU-155	86.50		30.90	-9.26E-03	2.08E-01	2.08E-01	
	456	105.30		20.70	1.42E-01 1.27E-01	2.75E+00	2.36E-01 2.75E+00	
+	EU-156	811.77 1153.47		10.40 7.20	-6.80E-02	2.756+00	5.41E+00	
		1230.71		8.90	3.99E-01		4.27E+00	
+	HO-166M	184.41		72.60	1.54E-01	9.54E-02	9.54E-02	
		280.45		29.60	2.96E-02		2.42E-01	
		410.94		11.10	8.81E-02	·	6.59E-01 1.53E-01	
+	TM-171	711.69 66.72		54.10 0.14	3.14E-02 -5.21E+01	4.94E+01	4.94E+01	
+	HF-172	81.75		4.52	-2.72E-01	4.40E-01	1.29E+00	
'	111 172	125.81		11.30	-1.26E-01	"	4.40E-01	
+	LU-172	181.53		20.60	-6.23E-02	2.83E+00	4.65E+00	
		810.06		16.63	-1.13E+00		8.89E+00	
		912.12		15.25	3.10E+01		1.76E+01	
	r rr 172	1093.66 100.72		62.50 5.24	6,67E-01 5.67E-01	3.61E-01	2.83E+00 9.30E-01	
+	LU-173	272.11		21.20	2.23E-02	3,015 0.	3.61E-01	
+	HF-175	343.40		84.00	-1.40E-01	1,04E-01	1.04E-01	
+	LU-176	88.34		13.30	-6.30E-02	6.62E-02	5,01E-01	
		201.83		86.00	1.43E-02		7.23E-02	•
		306.78		94.00	-8.55E-03	1 000 01	6.62E-02	
+	TA-182	67.75		41.20	-5.45E-02	1.89E-01	1.89E-01 5.21E-01	
		1121.30 1189.05		34.90 16.23	6.03E-01 4.30E-01		8.08E-01	
		1221.41		26.98	1.30E-01		5.03E-01	
		1231.02		11.44	-5.43E-02		1.06E+00	
+	IR-192	308.46		29.68	1.77E-01	2.04E-01	2.84E-01	
	*** 000	468.07		48.10 77.30	-5.90E-02 4.85E-02	1.38E-01	2.04E-01 1.38E-01	
i .	HG-203	279.19 569.67		97.72	-2.96E-02	7.79E-02	7.79E-02	
+	BI-207	1063.62		74.90	9.07E-02	7.752 02	1.48E-01	
+	TL-208	583.14	*	30.22	7.47E-01	4.67E-02	4.00E-01	
		860.37	*	4.48	2.05E+00		2.02E+00	
		2614.66	*	35.85	6.22E-01		4.67E-02	
+	BI-210M			45.00	3.04E-03	1.43E-01	1.43E-01	
	DD 210	300.00	*	23.00 4.25	8.81E-02 2.84E+00	2,22E+00	3.11E-01 2.22E+00	
+	PB-210	46.50 404.84		2.90	5.11E-01	2.60E+00	2.60E+00	
+	PB-211	831.96		2.90	-9.69E-01	2,000,00	2.93E+00	
+	BI-212	727,17	*	11.80	6.60E-01	8.83E-01	8.83E-01	
•		1620.62		2.75	5.58E-01		3.01E+00	
+	PB-212	238.63	*	44.60	9.74E-01	2.47E-01	2.47E-01	
		300.09		3.41	5.94E-01	0.01- 0	2.10E+00	
+	BI-214	609.31	*	46.30	1.01E+00	8.31E-02		
		1120.29	*	15.10	1.12E+00		1.21E+00	

4/13/2016 10:12:33AM

1603102-05

	Nuclide Name	Energy (keV)		Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
	BI-214	1764.49	*	15.80	1.72E+00	8.31E-02	8.31E-02	
	D1-714	2204.22	*	4.98	1.26E+00	0.012 0.5	1.85E+00	
+	PB-214	295.21	*	19.19	1.03E+00	2.48E-01	4.90E-01	
		351.92	*	37.19	1.27E+00		2.48E-01	
+	RN-219	401.80		6.50	-5.06E-01	1.08E+00	1.08E+00	
+	RA-223	323.87		3.88	-6.62E-01	1.75E+00	1.75E+00	
+	RA-224	240.98	*	3.95	3.26E+00	2.82E+00	2.82E+00	
+	RA-225	40.00		31.00	-1.22E-01	1.18E+00	1.18E+00	
+	RA-226	186.21	*	3.28	3.48E+00	2.68E+00	2.68E+00	
+	TH-227	50.10		8.40	6.83E-02	8.49E-01	8.49E-01	
		236.00		11.50	1.02E+00		8.71E-01	
		256.20		6.30	2.22E-01		1.01E+00	
+	AC-228	338.32	*	11.40	1,23E+00	3.80E-01	7.15E-01	
		911.07	*	27.70	9.035-01		3.80E-01	
	mr. 000	969.11	*	16.60	1.30E+00 -2.05E-02	4.96E-01	1.15E+00 4.96E-01	
+	TH-230	48.44		16.90	2.04E+0C	4.905 01	1,59E+00	
		62.85 67.67		4.60 0.37	-5.13E+00		1.78E+01	
+	PA-231	283.67		1.60	1.00E-01	2.82E+00	4.38E+00	
•	171 25#	302.67		2.30	1.15E-00		2.82E+00	
+	TH-231	25.64		14.70	-1.C7E+00	9.22E-01	3.03E+00	•
		84.21		6.40	-6.63E-01		9.22E-01	
+	PA-233	311.98		38.60	3.67E-02	3.39E-01	3.39E-01	
+	PA-234	131.20		20.40	5.15E-02	2.44E-01	2.44E-01	
		733.99		8.80	-1.71E-01		8.96E-01	
		946.00		12.00	-5.82E-01	- 4000	6.93E-01	
·†-	PA-234M			0.92	-4.37E-01	9.63E+00	9.63E+00	
+	TH-234	63.20		3.80	1.09E+00	1.91E+00	1.91E+00	
+	ΰ−235	143.76		10.50	3.64E-01	5.16E-01	5.16E-01	
		163.35		4.70	-1.11E-01		1.05E+00 1.32E+00	
	007	205.31		4.70	1.12E-01 -2.25E-02	5.05E-01	5.05E-01	
+	NP-237	86.50		12.60	5.05E+02	7.88E+02	7.88E+02	
+	NP-239	106.10		22.70		7.006702	2.11E+03	
		228.18 277.60		10.70 14.10	-2.94E+02 6.77E+02		1.78E+03	
+	AM-241	59.54		35.90	-1.57E-01	1.82E-01		
+	AM-241 AM-243	74.67	*	66.00	2.13E-01	1.57E-01		
	AM-243 CM-243	209.75		3.29	1.51E+00	4.98E-01		
+	CM-742	209.73		10.60	-8.22E-02	-, 5 0 L. 0 L	5.90E-01	
		277.60		14.00	1.89E-01		4.98E-01	
		2, 7, 00						

^{+ =} Nuclide identified during the nuclide identification

^{* =} Energy line found in the spectrum

> = MDA value not calculated

^{@ =} Half-life too short to be able to perform the decay correction

^{? =} CAUTION: MDA value is inconsistent with Currie MDA at 95% confidence level

Allalysis Report for 1000 for 50

SEDIMENT 2016-03-16B

NUCLIDE MDA REPORT

Nuclide Library Used

: \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB

	Nuclide Name	Energy (keV)	Yield(%)	Line MDA (pCi/grams)	Nuclice MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
+	BE-7	477.59 *	10.42	1.25E+00	1.2EE+00	1.125+00	6.00E-01
	NA-22	1274.54	99.94	9.85E-02	9.85E-02	2.47E-02	4.40E-02
	NA-24	1368.53	99.99	2.49E+12	1.19E+12	4.71E+11	1.11E+12
		2754.09	99.86	1.19E+12		1.61E+11	3.76E+11
	AL-26	1808.65	99.76	6.49E-02	6.49E-02	-1.09E-02	2.58E-02
+	K-40	1460.81 *	10.67	1.12E+00	1.12E+00	1.32E+01	5.04E-01
	@ AR-41	1293.64	99.16	1.00E+26	1.00E+26	1.00E+26	1.00E+20
	TI-44	67.88	94.40	6.97E-02	6.97E-02	-2.01E-02	3.40E-02
		78.34	96.00	8.65E-02		1.84E-01	4.24E-02
	SC-46	889.25	99.98	1.09E-01	1.09E-01	1.21E-02	4.99E-02
	-	1120.5	99.99	1.92E-01		2.55E-01	9.02E-02
	V-48	983.52	99.98	3.13E-01	3.13E-01	1.37E-01	1.43E-01
		1312.10	97.50	3.32E-01		-1.73E-01	1.48E-01
	CR-51	320.08	9.83	1.33E+00	1.33E+00	-2.67E-01	6.31E-01
	MN-54	834.83	99.97	9.27E-02	9.27E-02	-7.39E-04	4.25E-02
	CO-56	846.75	99.96	1.05E-01	1.05E-01	-2.26E-02	4.79E-02
		1037.75	14.03	7.68E-01		-3.63E-01	3.45E-01
		1238.25	67.00	2.64E-C1		1.64E-01	1.23E-01
		1771.40	15.51	4.82E-01		-2.36E-01	1.87E-01
		2598.48	16.90	3.43E-01		-1.71E-01	1.09E-01
	CO-57	122.06	85.51	5.97E-02	5.97E-02	-1.83E-03	2.88E-02
		136.48	10.60	4.95E-01		6.40E-03	2.39E-01
	CO-58	810.76	99.40	1.03E-01	1.03E-01	-4.82E-02	4.70E-02
	FE-59	1099.22	56,50	2.72E-01	2.72E-01	5.48E-02	1.24E-01
		1291.56	43.20	3.54E-01		1.53E-01	1.59E-01
	co-60	1173.22	100.00	9.43E-02	9.43E-02	-1.41E-02	4.23E-02
		1332.49	100.00	9.71E-02		-2.91E-02	4.32E-02
	ZN-65	1115.52	50.75	1.88E-01	1.88E-01	-6.24E-03	8.41E-02
+	GA-67	93.31 *	35.70	8.35E+01	8.35E+01	1.67E+02	4.09E+01
	011 07	208.95	2.24	1.12E+03		7.93E+02	5.40E+02
		300.22	16.00	1.66E+02		4.70E+01	7.96E+01
	SE-75	121.11	16.70	3.35E-01	9.67E-02	-3.08E-02	1.62E-01
	<u> </u>	136.00	59.20	9.67E-02		1.72E-02	4.67E-02
		264.65	59.80	1.25E-01		2.96E-02	5.96E-02
		279.53	25.20	3.33E-01		1.19E-01	1.60E-01
		400.65	11 40	7.31E-01		-1.82E-01	3.46E-01
	RB-82	776.52	13.00	1.30E+00	1.30E+00	2.78E-01	5.92E-01

for 1603102-05

Nuclide Name	Energy (keV)	Yield(%)	Line MĐA (pCi/grams)	Nuclide MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
 RB-83	520.41	46.00	1.73E-01	1.73E-01	-2.49E-02	8.02E-02
	529.64	30.30	2.88E-01	•	-1,74E-01	1.34E-01
	552.65	16.40	5.52E-01		-5.89E-02	2.57E-01
KR-85	513.99	0.43	2.35E+01	2.35E+01	3.34E+01	1.12E+01
SR-85	513.99	99.27	1.38E-01	1.38E-01	1.96E-01	6.57E-02
Y-88	898.02	93.40	1.23E-01	7.89E-02	2.41E-02	5.65E-02
	1836.0ļ	99.38	7.89E-02	0.047.01	-1.40E-02	3.13E-02
NB-93M	16.57	9.43	8.01E+01	8.01E+01	-2.34E+01	3.89E+01 4.22E-02
NB-94	702.63	100.00	9.06E-02	9.06E-02	-2.68E-03 1.33E-02	4.24E-02
	871.10	100.00	9.23E-02	1.83E-01	3.61E-03	8.56E-02
NB-95	765.79	99.81	1.83E-01	8.38E+01	9.81E+01	4.09E+01
NB-95M	235.69	25.00	8.38E+01 2.79E-01	1.87E-01	9.85E-03	1.30E-01
ZR-95	724.18	43.70 55.30	1.87E-01	1.010 01	-6.74E-03	8.54E-02
MO 00	756.72	6.20	9.71E+02	6.51E+02	2.67E+01	4.68E+02
MO-99	181.06 739.58	12.80	6.51E+02	0.0111.02	3.48E+01	2.97E+02
	778.00	4.50	1.84E+03		-5.81E+02	8.36E+02
RU-103	497.08	89.00	1.29E-01	1.29E-01	5.33E-02	6.03E-02
RU-105	621.84	9.80	8.15E-01	8.15E-01	8.84E-02	3.78E-01
AG-100 AG-108M	433.93	89.90	8.19E-02	8.19E-02	-1.02E-02	3.87E-02
710 10011	614.37	90.40	9.97E-02		2.10E-02	4.68E-02
	722.95	90.50	9.22E-02		6.35E-03	4.26E-02
CD-109	88.03	3.72	1.76E+00	1.76E+00	-1.09E+00	8.61E-01
AG-110M	657.75	93.14	8.99E-02	8.99E-02	-4.92E-02	4.16E-02
	677.61	10.53	6.96E-01		-4.21E-01	3.17E-01
	706.67	16.46	5.22E-01		-4.41E-01	2.40E-01
	763.93	21.98	4.42E-01		1.69E-02	2.05E-01
	884.67	71.63	1.27E-01		-4.41E-02	5.79E-02
	1384.27	23.94	4.09E-01	0 818.00	1.01E-02	1.80E-01 1.30E+02
CD-113M	263.70	0.02	2.71E+02	2.71E+02	-1.67E+00	1.88E+00
SN-113	255.12	1.93	3.92E+00	1.22E-01	5.67E-02 -9.33E-02	5.74E-02
_	391.69	64.90	1.22E-01	7 215 02	1.11E-02	3.52E-02
TE123M	159.00	84.10	7.31E-02	7.31E-02 1.05E-01	-4.95E-02	4.86E-02
SB-124	602.71	97.87	1.05E-01 1.39E+00	1.005-01	-4.26E-01	6.43E-01
	645.85	7.26 11.10	1.03E+00		7.13E-02	4.78E-01
	722.78 1691.02	49.00	2.10E-01		-4.85E-02	8.71E-02
ተ 195	35.49	6.49	2.77E+00	2.77E+05	-1.47E-01	1.33E+00
I-125 SB-125	176.33	6.89	7.29E-01	2.39E-01	-2.98E-01	3.50E-01
2D-TV2	427.89	29.33	2.39E-01	_,,	-8.99E-02	1.13E-01
1	463.38	10.35	8.20E-01		2.29E-01	3.89E-01
E _q	600.56	17.80	4.78E-01		2.51E-01	2.24E-01
	635.90	11.32	6.84E-01		-1.94E-01	3.16E-01
SB-126	414.70	83.30	3.99E-01	3.76E-01	-4.71E-02	1.88E-01
	666.33	99.60	3.76E-01	\	-2.89E-01	1.74E-01
	695.00	99.60	3.80E-01	•	9.05E-02	1.75E-01
	720.50	53.80	7.05E-01		-8.12E-02	3.25E-01
SN-126	87.57	37.00	1.70E-01	1.70E-01	-1.05E-01	8.31E-02
SB-127	473.00	25.00	4.15E+01	3.41E+01	-5.77E+01	1.94E+01
	685.20	35.70	3.41E+01		6.12E+00	1.58E+01
	783.80	14.70	9.54E+01	5 0Em 02	6.41E+01 -1.04E+01	4.42E+01 1.90E-01
I-129	29.78	57.00	3.95E-01	3.95E-01	1.11E-01	5.58E-01
	33.60	13.20	1.16E+00		T. T.T. O.T.	J.JUL UI

Analysis Report for 1603102-05

Nuclide Name	Energy (keV)	Yield(%)	Line MDA (pCi/grams)	Nuclide MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
I-129	39.58	7.52	1.36E+00	3.95E-01	-1.40E-01	6.55E-01
I-131	284.30	6.05	1.28E+01	7.95E-01	2.93E-01	6.14E+00
-	364.48	81.20	7.95E-01		-5.38E-02	3.74E-01
	636.97	7.26	1.15E+01		-4.09E+00	5.34E+00
	722.89	1.80	5.10E+01		3.52E+00	2.36E+01
TE-132	49.72	13.10	2.05E+02	2.64E+01	1.65E+01	9.93E+01
	228.16	88.00	2.64E+01		-3.68E+00	1.27E+01
BA-133	81.00	33.00	1.76E-01	1.66E-01	-6.96E-02	8.57E-02
	302.84	17.80	3.66E-01		1.49E-01	1.75E-01
•	356.01	60.00	1.66E-01	0 555.00	-1.24E-03	8.00E-02 1.75E+08
I - 133	529.87	86.30	3.75E+08	3.75E+08	-2.27E+08	2.94E+00
XE-133	81.00	38.00	6.03E+00	6.03E+00	-2.38%+00 -3.69%-01	3.80E-01
CS-134	563.23	8.38	8.22E-01	8.60E-02	-9.29E-02	2.30E-01
	569.32	15.43	4.94E-01 §.60E-02		9.39E-02	4.01E-02
	604.70	97.60 85.40	1.18E-01		8.70E-02	5.46E-02
	795.84 801.93	8.73	8.49E-01		-6.47E-01	3.84E-01
CS-135	268.24	16.00	4.44E-01	4.44E-01	9.96E-03	2.14E-01
@ I-135	1131.51	22.50	1.00E+26	1.00E+26	1.00E+26	1.00E+20
6 6 1-133	1260.41	28.60	1.00E+26	1,002,00	1.00E+26	1.00E+20
. @	1678.03	9.54	1.00E+26		1.00E+26	1.00E+20
CS-136	153.22	7.46	3.05E+00	3.33E-01	1.59E+00	1.47E+00
CD 130	163.89	4.61	4.63E+00		-4.93E-01	2.23E+00
	176.55	13.56	1.61E+00		-3.61E-01	7.74E-01
	273,45	12.66	2.38E+00		-1.69E+00	1.14E+00
	340.57	48.50	7.59E-01		1.38E+00	3.65E-01
	818.50	99.70	3.33E-01		-5.58E-02	1.51E-01
	1048.07	79.60	4.86E-01		1.05E-01	2.19E-01
	1235.34	19.70	2.94E+00		1.43E+00	1.36E+00
CS-137	661.65	85.12	1.00E-01	1.00E-01	1.27E-02	4.68E-02
LA-138	788.74	34.00	2.57E-01	1.45E-01	8.61E-02	1.18E-01
	1435.80	66.00	1.45E-01	9 115 00	3.31E-03	6.39E-02 3.42E-02
CE-139	165.85	80.35	7.11E-02	7.11E-02	-4.97E-05 -1.60E+00	1.59E+00
BA-140	162.64	6.70	.3.30E+00	1.36E+00	-6.28E-01	2.96E+00
	304.84	4.50	6.22E+00		3.95E+00	4.78E+00
!	423.70	3.20 2.00	1.01E+01 1.68E+01		5.82E+00	7.95E+00
	437.55 537.32	25.00	1.36E+01		2.17E-01	6.36E-01
LA-140	328.77	20.50	1.59E+00	4.42E-01	-6.56E-02	7.61E-01
TW-'140	487.03	45.50	6.95E-01	.,	-3.23E-02	3.26E-01
i .	815.85	23.50	1.49E+00		-1.47E-01	6.78E-01
ì	1596.49	95.49	4.42E-01		-3.91E-02	1.92E-01
CE-141	145.44	48.40	1.99E-01	1.99E-01	1.18E-01	9.63E-02
CE-143	57.36	11.80	7.01E+05	2.80E+05	1.28E+05	3.41E+05
	293.26	42.00	2.80E+05		2.16E+04	1.36E+05
	664.55	5.20	2.12E+06		1.12E+06	9.88E+05
CE-144	133.54	10.80	4.77E-01	4.77E-01	-1.38E-01	2.30E-01
PM-144	476.78	42.00	2.11E-01	8.06E-02	1.63E-01	9.98E-02
	618.03	98.60	8.06E-02		-1.71E-02	3.74E-02
	696.49	99.49	9.02E-02	0 00= 01	2.40E-02	4.18E-02
PM-145	36.85	21.70	5.38E-01	2.98E-01	-3.52E-01 1.77E-01	2.59E-01 1.44E-01
	37.3€	39.70	2.98E-01		-1.47E-01	2.84E-01
	42.30	15.10	5.88E-01		-T*41E-0T	2.045 01

1603102-05

Nuclide Name	Energy (keV)	Yield(%)	Line MDA (pCi/grams)	Nuclide MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
PM-145	72.40	2.31	3.07E+00	2.98E-01	-6.14E+00	1.50E+00
PM-146	453.90	39.94	1.83E-01	1.83E-01	-4.72E-02	8.61E-02
	735.90	14.01	5.87E-01		2.74E-02	2.70E-01
	747.13	13.10	5.83E-01		-1.81E-01	2.66E-01
ND-147	91.11	28.90	1.33E+00	1.33E+00	-4.49E-01	6.52E-01
	531.02	13.10	3.07E+00	•	-1.91E+00	1.43E+00
PM-149	285.90	3.10	1.40E+04	1.40E+04	5.53E+03	6.72E+03
EU-152	121.78	20.50	2.33E-01	2.33E-01	-7.12E-03	1.12E-01
	244.69	5.40	1.50E+00		1.73E-01	7.26E-01
	344.27	19.13	3.33E-01		-6.68E-01	1.58E-01
	778.89	9.20	7.80E-01		-4.90E-01	3.53E-01
	964.01	10.40	1.10E+00		2.39E-01	5.13E-01 5.97E-01
	1085.78	7.22	1.32E+00		-1.23E-01 9.83E-02	4.58E-01
	1112.02	9.60	1.01E+00		-2.24E-01	2.64E-01
	1407.95	14.94	6.02E-01	1.65E-01	-2.30E-01	7.98E-02
GD-153	97.43	31.30	1.65E-01	1.03E-01	-2.04E-01	1.08E-01
	103.18	22.20	2.23E-01	1.20E-01	2.10E-02	5.80E-02
EU-154	123.07	40.50	1.20E-01 4.26E-01	1.208-01	2.93E-02	1.97E-01
	723.30	19.70	7.84E-01		-2.58E-01	3.59E-01
	873.19	11.50 10.30	8.23E-01	,	2.49E-01	3.71E-01
	996.32	17.90	5.35E-01		4.65E-02	2.44E-01
•	1004.76	35.50	2.73E-01		6.87E-02	1.22E-01
DII 166	1274.45 86.50	30.90	2.08E-01	2.08E-01	-9.26E-03	1.02E-01
EU-155	105.30	20.70	2.36E-01	2.000	1.42E-01	1.14E-01
EU-156	811.77	10.40	2.75E+00	2.75E+00	1.27E-01	1.25E+00
E0-120	1153.47	7.20	5.41E+00	20142141	-6.80E-02	2.47E+00
	1230.71	8.90	4.27E+00		3.99E-01	1,94E+00
но-166М	184.41	72.60	9.54E-02	9.54E-02	1.54E-01	4.63E-02
110 10011	280.45	29.60	2.42E-01		2.96E-02	1.16E-01
	410.94	11.10	6.59E-01		8.81E-02	3.12E-01
	711.69	54.19	1.53E-01		3.14E-02	7.10E-02
TM-171	66.72	0.14	4.94E+01	4.94E+01	-5.21E+01	2.41E+01
HF-172	81,75	4.52	1.29E+00	4.40E-01	-2.72E-01	6.29E-01
*** ***	125.81	11.30	4.40E-01		-1.26E-01	2.12E-01
LU-172	181.53	20.60	4.65E+00	2.83E+00	-6.23E-02	2.24E+00
	810.06	16.63	8.89E+00		-1.13E+00	4.07E+00
	912.12	15.25	1.76E+01		3.10E+01	8.37E+00
	1093.66	62.50	2.83E+00		6.67E-01	1.29E+00
LU-173	100.72	5.24	9.30E-01	3.61E-01	5.67E-01	4.49E-01
	272.11	21.20	3.61E-01		2.23E-02	1.74E-01
HF-175	343.40	84.00	1.04E-01	1.04E-01	-1.40E-01	4.95E-02 2.45E-01
LU-176	88.34	13.30	5.01E-01	6.62E-02	-6.30E-02	3.49E-02
	201.83	86.00	7.23E-02		1.43E-02	3.49E-02
	306.78	94.00	6.62E-02	1 00m 01	-8.55E-03	9.21E-02
TA-182	67.75	41.20	1.29E-01	1.89E-01	-5.45E-02 6.03E-01	2.45E-01
	1121.30	34.90	5.21E-01		4.30E-01	3.69E-01
	1189.05	16.23	8.08E-01		1.30E-01	2.30E-01
	1221.41	26.98	5.03E-01		-5.43E-02	4.76E-01
	1231.02	11.44	1.06E+00	2.04E-01	1.77E-01	1.36E-01
IR-192	308.46	29.68	2.84E-01	Z.04E-01	-5.90E-02	9.60E-02
	468.07	48.10	2.04E-01	1.38E-01	4.85E-02	6.60E-02
HG-203	279.19	77.30	1.39E-01	T.30E-0T	3.00E 0Z	0.000 02

1603102-05

	Nuclide Name	Energy (keV)		Yield(%)	Line MDA (pCi/grams)	Nuclide MDA (pCi/grams)	Activity (pCi/grams)	Dec. Level (pCi/grams)
				07.70	2 707 02	7 705 02	-2.96E-02	3.63E-02
	BI-207	569.67		97.72	7.79E-02	7.79E-02	9.07E-02	6.80E-02
	000	1063.62		74.90	1.48E-01	4 67E-02	7.47E-01	1.91E-01
7	TL-208	583.14	*	30.22	4.00E-01	4.67E-02	2.05E+00	9.27E-01
		860.37	*	4.48	2.02E+00		6.22E-01	0.00E+00
		2614.66	^	35.85	4.67É-02 1.43E-01	1.43E-01	3.04E-03	6.84E-02
	BI-210M	262.00		45.00		1.42E-01	8.81E-02	1.49E-01
		300.00		23.00	3.11E-01	2.22E+00	2.84E+00	1.08E+00
+	PB-210	46.50	*	4.25	2.22E+00 2.60E+00	2.22E+00 2.60E+00	5.11E-01	1.23E+00
	PB-211	404.84		2.90	2.93E+00	2.006+00	-9.69E-01	1.34E+00
	010	831.96	*	2.90 11.80	8.83E-01	8.83E-01	6,60E-01	4.15E-01
+	BI-212	727.17	~	2.75	3.01E+00	0.035 01	5.58E-01	1.28E+00
	DD 010	1620.62 238.63	*	44.60	2.47E-01	2.47E-01	9.74E-01	1.21E-01
+	PB-212	300.09		3.41	2.10E+00	2.4711 01	5.946-01	1.01E+00
	DT 014	609.31	*	46.30	2.47E-01	8.31E-02	1.01E+00	1.18E-01
+	BI-214	1120.29	*	15.10	1.21E+00	0.515 02	1.12E+00	5.75E-01
		1764.49	*	15.80	8.31E-02	•	1.72E+00	0.00E+00
		2204.22	*	4.98	1.85E+00		1.26E+00	7.74E-01
+	PB-214	295.21	*	19.19	4.90E-01	2.48E-01	1.03E+00	2.37E-01
7.	PD-214	351.92	*	37.19	2.48E-01	2.102 02	1.27E+00	1.19E-01
	RN-219	401.80		6.50	1,08E+00	1.08E+00	-5.06E-01	5.10E-01
	RA-223	323.87		3.88	1.75E+00	1.75E+00	-6.62E-01	8.32E-01
+	RA-224	240.98	*	3.95	2.82E+00	2.82%+00	3.26E+00	1.38E+00
'	RA-225	40.00		31.00	1.18E+00	1.18E+00	-1.22E-01	5.71E-01
+	RA-226	186.21	*	3.28	2.68E+00	2.68E+00	3.48E+00	1.31E+00
•	TH-227	50.10		8.40	8.49E-01	8.49E-01	6.83E-02	4.11E-01
		236.00		11.50	8.71E-01		1.02E+00	4.25E-01
		256.20		6.30	1.01E+00		2.22E-01	4.85E-01
+	AC-228	338.32	*	11.40	7.15E-01	3.80E-01	1.23E+00	3.43E-01
		911.07	*	27.70	3.80E-01		9.03E-01	1.76E-01
		969.11	*	16.60	1.15E+00		1.30E+00	5.48E-01
	TH-230	48.44		16.90	4.96E-01	4.96E-01	-2.05E - 02	2.41E-01
		62.85		4.60	1.59E+00		2.04E+00	7.74E-01
		67.67		0.37	1.78E+01		-5.13E+00	8.67E+00
	PA-231	283.67		1.60	4.38E+00	2.82E+00	1.00E-01	2.10E+00
		302.67		2.30	2.82E+00		1.15E+00	1.35E+00
	TH-231	25.64		14.70	3.03E+00	9.22E-01	-1.27E+00	1.46E+00
		84.21		6.40	9.22E-01		-6.63E-01	4.49E-01
	PA-233	311.98		38.€0	3.39E-01	3.39E-01	3.67E-02	1.61E-01
	PA-234	131.20		20.40	2.44E-01	2.44E-01	5.15E-02	1.18E-01
		733.99		8.80	8.96E-01		-1.71E-01	4.11E-01
		946.00		12.00	6.93E-01	a .com . a a	-5.82E-01	3.13E-01
	PA-234M	1001.03		0.92	9.63E+00	9.63E+00	-4.37E-01	4.36E+00
	TH-234	63.29		3.80	i 91E+00	1.91E+00	1.09E+00	9.30E-01 2.50E-01
	U-235	143.76		10.50	5.16E-01	5.16E-01	3.64E-01	5.04E-01
		163.35		4.70	1.05E+00		-1.11E-01 1.12E-01	6.35E-01
	6.5-	205.3%		4.70	1.32E+00	5.05E-01	-2.25E-02	2.46E-01
	NP-237	86.50		12.60	5.05E-01	7.88E+02	5.05E+02	3.82E+02
	NP-239	106.10		22.70	7.88E+02	7.00ETUZ	-2.94E+02	1.01E+03
		228.18		10.70	2.11E+03 1.78E+03		6.77E+02	8.55E+02
	7A N. J. O. A. S	277.60		14.10 35.90	1.82E-01	1.82E-01	-1.57E-01	8.86E-02
	AM-241	59.54 74.67	*	66.00	1.57E-01	1.57E-01	2.13E-01	7.73E-02
+	AM-243	14.07		00.00	T. 2117-01	4.012 01	UI	

1603102-05

SEDIMENT 2046-03-168

Nuclide	Energy	Yietd(%)	Line MDA	Nuclide MDA	Activity	Dec. Level
Nam <u>e</u>	(keV)		_(pCi/grams)	(pCi/grams)	(pCi/grams)	(pCi/grams)
CM-243	209.75 228.14 277.60	3.29 10.60 14.00	2.06E+00 5.90E-01 4.98E-01	4.98E-01	1.51E+00 -8.22E-02 1.89E-01	9.95E-01 2.84E-01 2.39E-01

- + = Nuclide identified during the nuclide identification
- * = Energy line found in the spectrum
- > = MDA value not calculated
- @ = Half-life too short to be able to perform the decay correction

No Action Level results available for reporting purposes.

DATA REVIEW COMMENTS REPORT

Creation Date

Comment

User

No Data Review Comments Entered.

Sample Title: SEDIMENT 2016-03-16B

Elapsed Live time: 3600 Elapsed Real Time: 3612 3600

Channel -							!	
1:	0	0	0	0	0	0	0 73	0 86
9:	2	140	151	119	90 50	96		54
17:	84	69	60	70	58	59	90	
25:	68	65	54	44	48	56	46	56
33:	54	58	36	55	53	58	52	63
41:	54	51	60	61	53	72	147	103
49:	48	48	64	62	60	63	73	77
57 :	79	69	80	92	78	91	113	174
65 :	105	76	112	120	103	92	108	85
73:	87	126	218	232	253	387	108	85
81:	80	99	72	94	129	74	98	154
89:	95	119	141	74	177	172	91	75 64
97:	33	47	82	66	53	46	43	64
105:	67	75	56	57	47	69	46	44
113:	55	53	56	69	52	64	50	53
121:	54	55	59	48	60	45	61	57
129:	55	65	56	53	49	48	48	. 57
137:	47	57	48	46	60	44	61	74
145:	73	50	40	51	43	48	48	58.
153:	45	53	60	48	40	59	61 47	43 40
161:	47	43	44	42	36	48	47 42	37
169:	46	38	36	39	48	36	57	41
177:	42	36	45	44	45	36	35	41
185:	52	114	103	53	41	39 44	40	38
193:	48	45	49	39	35	4 4 37	39	33
201:	40	44	32	35	29 36	32	33	43
209:	51	52	40	38 29	31	32 36	28	49
217:	35	36	37 32	29 29	26	31	31	34
225:	29	37		42	30	90	297	175
233:	21	25	36 72	34	29	25	35	29
241:	54	102	22	27	24	20	28	26
249:	25	29 30	24	32	17	27 27	28	27
257:	34	21	21	23	22	49	53	33
265:	27	21 25	25	18	25	46	35	24
273:	20	25 27	24	25	31	32	30	27
281:	22 23	25	21	21	15	23	85	148
289:	45	25 14	22	27	27	25	21	18
297:	12	15	20	19	18	28	26	15
305: 313:	17	13	17	1.9	16	24	14	19
313:	13	20	26	25	20	20	17	27
329:	30	27	19	17	26	20	19	12
337:	22	31	72	28	20	30	15	$\overline{11}$
345:	10	8	1.6	18	22	10	42	178
353 :	170	25	11	13	14	13	17	19
361:	13	11	16	12	11	73	12	9
J () ± •	10	حلب بلت						

369: 10 10 17 17 21 14 21 15

Sample Title: SEDIMENT 2016-03-16B

	Sample	Title:	SEDIMENT	2016-03	3-16B			
Channel	l			!_				
377:	17	16	6 '	11	16	11	12	12
385:	16	21	15	21	13	16	18	11
393:	13	14	12	21	19	16	17	10
401:	9	18	22	14	13	16	21	14
409:	15	24	1.4	6	20	1.5	1.3	10
417:	15	1.8	9	1.3	8	15	16	21
425:	13	13	12	13	1.0	15	12	15
433:	10	1.9	15	14	14	16	18	12
441:	11	10	10	12	16	10	7	9
449:	14	13	7	12	11	14	11	22
457:	11	16	14	4	18	17 10	23 13	23 7
465: 473:	17 12	12 6	12 13	15 13	12 15	32	13 19	12
473: 481:	12	9	9	8	1 3	10	16	14
489:	7	. 13	15	9	5	9	11	8
497:	7	13	8	14	5	10	11	9
505:	9	5	9	13	23	24	48	36
513:	15	15	11	8	10	6	1	7
521:	7	12	9	5 6	12	18	10	11
529:	5	11	. 7		11	9	11	10
537 :	5	12	12	11	11	8	10	11_{-}
545 :	4	6	8	10	8	20	6	8
553:	2	7	10	8	7	10	11	6
561:	6	8	6	Ó	10	8	9 15	8 · 5 ·
569:	12 7	10 7	9 13	6 5 6	11 7	11 19	48	61
577 : 585 :	20	15	13 11	7		6	6	Q I
593:	7	15	11	8	86868575	13	17	9 5
601:	9	8	11	8	Š	6	10	16
609:	89	130	30		6	8	9	7
617:	14	5	4	6 7	8	10	8	7
625:	10	3	7	3.	.5	5	4	8
633 :	12	7	5 8	3. 3 6	7	9	9	12
641:	10	7	8		5	8	2	9
649:	9	11 8 10	5	7	7	9	4	9
657:	6	8	6	7	11	17	7	1
665:	1 7	10	8	7	6	9	10	6 7
673:	7 5 7	10 7	6 8 6 9 3 12 7	6	11 6 3 9 13 5 6 6 8 5 6	9 3 9 5	8 6	7 6 7 5 2 11 7 7
681: 689:		9	3	, 5	13	5	4	2
697:	; 6 , 6	14	12	9	5	14	11	11
705:	; 7	6	7	6	6	4	13	7
713:	; 7 ; 3 ; 5	5	13	5	6	6	7	7
721:	5	9	13 6	6	8	9	16	13
729:	10	9	4	3	5	9 12	9 6	8
737 :	10 2 5 4 3	6	4 4 10 4 7	2	6	10 3	6	5
745:	5	5	10	4	6	3	7	5
753:	4	5	4	3	7	8	8	3
761:	3	10	7	9	8	8 7	8	13
769:	12	9 14 6 5 9 6 5 5 10 9 6	6	5	Ю '7	<i>!</i> 6	9 6	ے د
777: 785:	15 3 7	18	6 6 5	7 5 9 6 5 6 3 2 4 3 9 5 1 4	8 6 7 6 6	4	9 6 6	13 8 5 3 19 2 6 4
785:	9	1.8 1.0	11	12	5 6	3	3	4
1733	, ,	⊒. ∪	با. بلد	上之	U	J	5	1

	Sampre	TILLE;	SEDIMEN:	2010-0)T()D			
Channel		<u>-</u> -						
809:	5	5	5	3 5	8 7	5 5	6	3 6 6
817:	4	1	4	3		11	4	6
825:	11	9	6		4	11	4	
833:	6	.5	4	14	<i>4</i>		4 7	3
841:	8	9	9	4	4 7	? Э	2	3
849:	6	5 5	6 8	8 9	18	3 7	7	5
857: 865:	8 2	4	2	13	<u>4</u>	6	6	6 3 2 5 6
873:	4	5	7	7	5	. 8	4	4
881:	6	3	5	ĺ	11	· 8 5	4	9
889:	8	4	1	6	4	4	7	9
897:	4	6		7	4	5	8	6
905:	7	4	9 3		7	13	47	28
913:	7	9	5	2 .	5	2	5	8
921:	6	10	12	3 2 2 8	7	4	6	4
929:	4	3	3		14	11	5	4
937:	5	9	1	6	9	2	8	. 2
945:	5 5 5	3	6	1	5 2 9	11	7	7 3
953 :		5 10	3 7	6 12	2	3 7	ე ი	11
961: 969:	4 31	21	3	7 <u>.</u> 7	10	3	3	
977 :	3 7 7	3	0	4	7	7	3	5
985:	3 3 4	7	4	5	4	2	5 9 3 3 2	3
993:	$\overset{\circ}{4}$	6	$\overline{4}$	5 5	- 4	4		3
1001:	3 1	5	8	7	5	2	1 3 2	6
1009:	1	5	7	3	452960225426	2		8 5 3 6 4 3
1017:	4	Ĺ	7	3 3 5 % a	9	6 3	6	3
1925:	3	4	4	5	6		5	4 3 2
1033:	9	2	4	3	C	4 5 3 5 6	8	3
1041:	4	7	4	2. F	2	5	7	7
1049: 1057:	6	4	3,	5 7	Z. E.	ა ნ	6 6	7
1057:	4 8	4 7	4 4	2		5	4	
1073:	7	3	8	6	2	3	5	2 3 5
1081:	4	5	5	6	6	3 1	6	5
1089:		4		4				
1089: 1097:	8	8	5	6	1	3	5 3 4	5
1105:	2 8 6	5	4	6 4	5	5		2
1113:	3	8 5 6	6 5 4 6 5 4	1	1	3 3 5 6 8 5 4 3 7 4	17	33
1121:	14	6	5	2	4	8	4	2
1129:	3 7	4	4	0	6	5	0	5
1137:	7	7	5	8	2	4	6	2
1145:	1 1	Ü	11	7	5	3	7	4
1153:	. 5 8	3	9	3	ن د	.1	6	2
1161: 1169:	6	5	3	2	1		3	4
1177:	5	4	3	5	6	2	6 6 3 7	1
1185:	6	6	5	4	5	6		4
1185: 1193:	3	$\tilde{2}$	5	6	7	5	5	3
1201•	6 5 6 3 4 2 1	8	8	2	3	8 2 6 5 7	9	6
1209:	2	4	3	6	5		2	7
1209: 1217: 1225:	1	0 3 3 5 4 6 2 8 4 8 5	9 1 3 3 5 5 8 3 2 7	1 2 0 8 7 7 3 2 5 4 6 2 6 5 3	915146253616573524	7	7 5 9 2 6 5	3 5 2 3 2 5 2 4 4 2 4 1 4 3 6 7 8 8
1225:	4	5	7	3	4	2	5	8

Sample Title: SEDIMENT 2016-03-16B

	o carrier and					1		1
Channel 1241: 1249: 1257: 1265: 1273: 12897: 131321: 13297: 133453: 13453: 134697: 13467: 14475: 14475: 14477: 14467: 14477: 14467: 14477: 14477: 14477: 14477: 1457: 15537: 15		6 25626322225243133351242104012201020012011	53353562616013434133512222129132000132110	361515022303213333311201 120110020012001		3 4 4 4 1 5 4 2 4 5 1 3 2 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1465: 1473: 1481: 1489: 1497: 1505: 1513: 1521: 1529: 1537:	0 0 1 4 1 2 0 2 1	2 0 1 0 2 0	3 2 0 0	1 0 0 2 0	0 0 1 0 3 0 4	0 2 0 2 5 1 1 1	0 1 3 0 1 1 1 4 4 2 1 0 3 0 1 2 1 2 0 3 0 0 1	2 2 3 2 0

	Sample	Title:	SEDIMENT	2015~03	T 0R			
Channel								
1673:	. 3	1	1	0	0	0	1	3
1681:	0	1	. 0	1	i	1	0	0
1689:	2	0	2	1	0	1	2	2
1697:	3	0	2	1	2	1	0	2
1705:	1	0	1	0	0	0	0	0
1713:	0	0	1	1	0	1	0	0
1721:	1	1	1	2 2	2	1	0	2
1729:	3	2	1		1	0	2 0	0 1
1737:	0	0	0	0	1 0	0 2	0	0
1745:	0	0	1	1 0	0	2 1	1.	1
1753:	0	2	0 10	20	16	. <u>.</u> 4	0	0
1761:	1	2 1	0	0	0	. 0	1	5
1769:	2 0	0	1	0	0	0	0	Õ
1777: 1785:	0	0	0	0	0	ŏ	Ö	Ö
1793:	. 0	1	Ő	0 -	ĭ	ĺ	Ö	ĺ
1801:	0	Ō	, 4	Ö	ī	ō	ĺ	1
1809:	$\overset{\circ}{1}$	Ö	Ō	1	1	0	0	1
1817:	2	Õ	2	1	1.	0	0	0
1825:	2	1	1	O	2	1	0	1
1833:	0	0	2	₩ .	1	0	0	0
1841:	1	1	2	0	Ü	3	4	2
1849:	0	1	7.	2	C	7	1	0
1857:	1	2	0	1	1	2	0	1
1865:	1	3	0	2	0	2	1.	1
1873:	0	1	0	1	2	0	0 0	0 0
1881:	1	1	3	1 1		0 0	1	0
1889:	0 1	0 1	2	0	1 2 3	1	$\overset{ au}{1}$	0
1897: 1905:	1	0	1	1	1	0	Õ	Ö
1903:	0	0	3	Ō	1	ő	ž	ĺ
1921:	0	Č	1	1	Ĉ	Ö	Ō	0
1929:	Õ	ĭ	<u>ī</u>	1	0	1	1	0
1937:	Ō	Ō	1	1	0	0	2	2
1945:	1	0	0	0	0	2	1	0
1953:	0	0	0 1	3	0	2 1.	0	0
1961:	1	0		3 0 2 0	0 2 0	1.	0	3
1969:	0	1	0	2	2	0	2	1.
1977:	0 2 3 2 1 3	1 1 2 2 1	0 1 0		0	0	0	1
1985:	3	2	0	0	0	1 2 0	0	1 2
1993:	2	2	0 1	0	0 3 0	<u>ر</u> م	1 0	1
2001:	Ţ	0	0	1 0	0	1		0
2009:	0	1		0	Ö	1	1 2 0	0
2017: 2025:	. 0	. 0	2	1	0	Õ	Ō	Ö
2023:	0	1	0 2 1 2 0	0 1 1	Ö	Ö	i	0 2 0
2041:	Ö	0	2	Õ	Ö	Ö	0	0
2049:	ĭ	3	_ 0	1	0	1	1	1
2057:	ī	3 2 0	0	1	е	0	0	1
2065:	0		0	0 1 1 0 1	3	0	0	1 1 1 1
2073:	0	0	0	1	1	0	1	1
2081:	0	0	i 0	1	0 3 1 1 0	0	0	0 2
2089:	0	0	0	0	O	0	0	2

Channel	Data	Repor	ct		4/13/2016	10:12:	41 AM		Page	7
2529:		0	0	0	2	0	1	1	0	
	Samp	ole Ti	itle:	SEDIMEN	T 2016-03-	·16B		4		
Channel 253453::::::::::::::::::::::::::::::::::		-0000100000000002100010100000000010000000	101000000000100010000000000000000000000	000000000000000000000000000000000000	010000010201021000001011000000000011000000		000000000000000000000000000000000000000	100100001400000000000011000000000000000	000020000201110000100000000000000000000	

Channel	Data Repo	rt	4/	13/2016	10:12:4	11 AM		Page {
2361:	0	0	0	0	0	О	0	0
	Sample T	itle:	SEDIMENT	2016-03-	-16B			
Channel 2969: 2977: 2985: 29019: 29977: 29985: 29017: 29985: 30025: 30		000000000000000000000000000000000000	SEDIMENT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2015-03- 	010001100001100000000000000000000000000	010001000000001100000000000000000000000	000000130010000000000011001000000000000	
3297: 3305: 3313: 3321: 3329: 3337: 3345: 3353: 3361:	0 0 1 0 0 0	1 2 0 0 0 0 0	0 0 0 0 0 0 2 0 0	1 0 1 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 1 0 0	0 0 0 0 0 0 1 0	0 0 0 0 0 0 0

8.....

Channel	Data	Rep	ort		4/13/2016	10:12	:41 AM		Page
3393:		0	0	0	1	0	0	0	0
	Samp	ole	Title:	SEDIME	NT 2016-03	3-16B			
Channel: 3401: 344275: 344275: 344275: 344275: 344275: 344275: 344275: 344275: 344275: 344275: 344275: 344275: 344275: 34427755: 3442775: 3442775: 3442775: 3442775: 3442775: 3442775: 34427755: 3442775: 3442775: 3442775: 3442775: 3442775: 3442775: 34427755: 3442775: 3442775: 3442775: 3442775: 3442775: 3442775: 34427755: 3442775: 3442775: 3442775: 3442775: 3442775: 3442775: 344277	Samp	e 00000000000000000000000000000000000	01000000000000000000000000000000000000	00000100000000000000000000000000000000	01000010000000000000000000000000000000		010000000100000000000000000000000000000		100000000000000000000000000000000000000

Channel Dat	a Repor	:t	4	/13/2016	10:12:	41 AM		Page 10
3825:	0	0	0	0	0	ì	0	1
Sa	ample Ti	tle:	SEDIMENT	2016-03-	-16B			
Channel 3833: 3841: 3849: 3857: 3865: 3873: 3881: 38897: 3905: 3913: 3929: 3929: 3937: 3945: 3969: 3969: 3977: 3985: 3969: 3977: 4009: 4017: 4025: 4033: 4041: 4049: 4049: 4057: 4065: 4073: 4081:		100000000000000000000000000000000000000			000000010001000000000000000000000000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

0000035701.CNF Live Time :3600.000 sec

Real Time :3611.770 sec

Start: 1: 0.7(keV)

Stop : 4096:4097.0(keV)

Acq. Start :Wed Apr 13 09:12:11 2016 104-Counts-log scale Channel

ROI Type: 1

ROI Type: 2

1603102-06

SEDIMENT 2016-03-16B DUP

GAMMA SPECTRUM ANALYSIS

Sample Identification

: 1603102-06

Sample Description

: SEDIMENT 2016-03-16B DUP

Sample Type : S

: SOIL

Sample Size Facility : 5.360E+02 grams

: Countroom

Sample Taken On Acquisition Started : 3/16/2016 1:45:59PM : 4/13/2016 10:13:02AM

Procedure : GAS-1402 pCi
Operator : Administrator
Detector Name : GE3
Geometry : GAS-1402

 Detector Name
 : GE3

 Geometry
 : GAS-1402

 Live Time
 : 3600.0 seconds

 Real Time
 : 3611.4 seconds

Dead Time . 0.32 %

Peak Locate Threshold : 2.50
Peak Locate Range (in channels) : 1 - 4096
Peak Area Range (in channels) : 9 - 4096
Identification Energy Tolerance : 1.000 keV

Energy Calibration Used Done On : 10/25/2014
Efficiency Calibration Used Done On : 10/25/2014
Efficiency Calibration Description :

Sample Number : 35710

PEAK-TO-TOTAL CALIBRATION REPORT

Peak-to-Total Efficiency Calibration Equation

K4 4/13/16 SEDIMENT 2016-03-16B DUP

PEAK LOCATE REPORT

Peak Locate Performed on

: 4/13/2016 11:13:14AM

Peak Locate From Channel : 1

Peak Locate To Channel : 4096
Peak Search Sensitivity : 2.50 Peak Search Sensitivity

Peak No.	Energy (keV)	Centroid Channel	Centroid Uncertainty	Peak Significance
1	24.22	24.46	0.0000	0.00
2	46.63	46.86	0.0000	0.00
3	62.99	63.21	0.0000	0.00
4	74.94	75.15	0.0000	0.00
5	77.78	77.99	0.0000	0.00
6	88.34	88.54	0.0000	0.00
7	128.04	128.22	0.0000	0.00
8	167.33	167.50	0.0000	0.00
9	185.96	186.11	0.0000	0.00
. 10	198.58	198.83	0.0000	0.00
11	238.98	239.10	0.0000	0.00
12	242.23	242.36	0.0000	0.00
13	270.34	270.45	0.0000	0.00
14	277.96	278.07	0.0000	0.00
15	295.69	295.79	0.0000	0.00
16	300.61	300.70	0.0000	0.00
17	338.68	338.75	0.0000	0.00
18	352.38	352.45	0.0000	0.00
19	459.17	459.19	0.0000	0.00
20	462.85	462.87	0.0000	0.00
21	478.18	478.18	0.0000	0.00
. 22	511.55	511.54	0.0000	0.00
23	583.15	583.10	0.0000	0.00
24	609.54	609.49	0.0000	0.00
25	728.02	727.90	0.0000	0.00
26	768.53	768.40	0.0000	0.00
27	786.12	785.98	0.0000	0.00
28	794.79	794.64	0.0000	0.00 0.00
: 29	865.00	864.83	0.0000	0.00
30	911.39	911.19	0.0000	0.00
. 31	969.23	969.01	0.0000	0.00
32	1091.59	1091.32	0.0000	0.00
33	1121.04	1120.75	0.0000	0.00
34	1218.18	1217.85	0.0000	0.00
35	1432.50	1432.09	0.0000	0.00
36	1460.89	1460.46	0.0000 0.0000	0.00
37	1531.64	1531.19	0.0000	0.00
38	1593.29	1592.82		0.00
39	1626.69	1626.21	0.0000 0.0000	0.00
40	1630.34	1629.85	0.0000	0.00
41	1659.46	1658.97	0.0000	0.00
42	1730.78	1730.26	5.0000	0.00

Page 3 of 28

Analysis Report for

1603102-06

Peak No.	Energy (keV)	Centroid Channel	Centroid Uncertainty	Peak Significance
 43	1764.27	1763.74	0.0000	0.00
44	1874.00	1873.43	0.0000	0.00
45	1973.17	1972.57	0.0000	0.00
46	2103.87	2103.23	0.000	0.00
47	2614.39	2613.61	0.0000	0.00

^{? =} Adjacent peak noted Errors quoted at 2.000sigma

1603102-06

SEDIMENT 2016-03-16B DUP

PEAK ANALYSIS REPORT

Peak Analysis Performed on

: 4/13/2016 11:13:14AM

Peak Analysis From Channel

Peak Analysis To Channel : 4096

	Peak No.	Energy (keV)	ROI RO start en		Net Peak Area	Net Area Uncertainty	Continuum Counts	FWHM (keV)
	1	24.22	21 - 2	9 24.46	8.05E+01	81.10	9.51E+02	6.38
	2	46.63	44 - 5		1.03E+02	71.93	8.68E+02	1.08
	3	62.99	59 - 6		1.72E+02	100.94	1.47E+03	1.71
M	4	74.94	71 - 8	2 75.15	2.49E+02	78.06	9.46E+02	1.66
m	5	77.78	71 - 8		4.76E+02	84.70	8.87E+02	1.67
	6	88.34	86 - 9	1 88.54	8.59E+01	79.81	1.20E+03	1.09
	7	128.04	125 - 13	1 128.22	5.71E+01	64.33	7.12E+02	2.36
	8	167.33	165 - 17	0 167.50	5.96E+01	47,48	4.05E+02	2.60
	9.	185.96	182 - 19	0 186.11	1.56E+02	72.24	7.09E+02	1.89
	10	198.68	195 - 20	3 198.83	6.80E+01	66.75	6.44E+02	6.22
M	11	238.98	233 - 24	6 239.10	5.33E+02	56.63	2.88E+02	1.75
m	12	242.23	233 - 24	6 242.36	1,67E+02	62.99	2,82E+02	2.08
М	13	270.34	267 - 28	3 270.45	5.41E+01	43.24	3.24E+02	2.24
m	14	277.96	267 - 28	3 278.07	3.49E+01	47.54	3.31E+02	2.82
М	15	295.69	291 - 30	6 295.79	2.52E+02	42.11	1.81E+02	1.75
m	1.6	300.61	291 - 30	6 300.70	6.79E+01	41.54	2.30E+02	2.36
	17	338.68	335 - 34	3 338.75	8.44E+01	49.25	3.15E+02	2.09
	18	352.38	348 - 35	6 352.45	3.94E+02	58.20	2.77E+02	1.97
М	19	459.17	458 - 46	7 459.19	1.56E+01	12.45	4.11E+01	2.09
m	20	462.85	458 - 46	7 462.87	2.90E+01	26.59	1.15E+02	2.09
	21	478.18	474 - 48	2 478.18	8.56E+01	41.81	2.17E+02	1.35
-	22	511.55	507 - 51	6 511.54	1.10E+02	40.17	1.63E+02	1.86
	23	583.15	578 - 58	7 583.10	1.21E+02	42.59	1.90E+02	1.89
	24	609.54	60 - 61	4 609.49	3.00E+02	46.80	1.32E+02	2.07
	25	728.02	723 - 73	2 727.90	3.50E+01	30.64	1.12E+02	1.72
	26	768.53	764 - 77		3.95E+01	29.22	1.05E+02	2.90
	27	786.12	783 - 78		1.775+01	18.86	5.06E+01	3.04
	28	794.79	790 - 79		2.69E+01	25.20	7.61E+01	2.22
	29	865.00	858 - 87		4.22E+01	35.04	1.08E+02	11.27
	30	911.39	907 - 91		9.25E+01	33,62	1.05E+02	2.42
	31	969.23	966 - 97	3 969.01	4.99E+01	24.00	6.02E+01	1.75
	32	1091.59	1086 - 109		2.32E+01	19.29	3.95E+01	4.29
	33	1121.04	1116 - 112		6.35E+01	27.95	6.69E+01	2.14
	34	1218.18	1212 - 122	2 1217.85	2.24E+01	27.35	8.71E+01	2.76
	35	1432.50	1427 - 143		1.50E+01	11.40	1.00E+01	4.62
	36	1460.89	1456 - 146		3.60E+02	38,32	4.53E+00	2.49
	37	1531.64	1529 - 153		8.15E+00	7.00	3.70E+00	2.36
	38	1593.29	1590 - 159		1.03E+01	13.42	2.14E+01	2.48
Μ	39	1626.69	1625 - 163		6.94E+00	3.74	2.00E+00	4.60
m	40	1630.34	1625 - 163	1629.85	1.08E+01	10.00	8.00E+00	4.14

1603102-06

SEDIMENT 2016-03-16B DUP

Peak No.	Energy (keV)	ROI start	ROI end	Peak Centroid	Net Peak Area	Net Area Uncertainty	Continuum Counts	FWHM (keV)
41	1659.46	1655 -	1664	1658.97	1.15E+01	10.86	1.11E+01	5.43
42	1730.78	1726 -		1730,26	1.02E+01	9.38	7.57E+00	1.99
43	1764.27	1759 -	1768	1763.74	4.14E+01	18.47	2.52E+01	1.63
44	1874.00	1869 -	1876	1873.43	7.00E+00	5.29	0.00E+00	3.00
45	1973.17	1969 -		1972.57	7.00E+00	5.29	0.00E+00	2.22
46	2103.87	2099 -		2103.23	9.50E+00	9.82	9.00E+00	1.19
47	2614.39	2609 -		2613.61	4.10E+01	12.81	0.00E+00	2.25

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

PEAK ANALYSIS REPORT

Peak Analysis Performed on

: 4/13/2016 11:13:14AM

Peak Analysis From Channel

: 1

Peak Analysis To Channel

: 4096

	Peak No.	Energy (keV)	ROI start	ROI end	Net Peak Area	Net Area Uncertainty	Continuum Counts	Critical Level
	1	24.22	21 -	29	8.05E+01	81.10	9.51E+02	6.50E+01
	2	46.63	44 -	50	1.03E+02	71.93	8.68E+02	5.67E+01
	3	62.99	59 -	67	1.72E+02	100.94	1.47E+03	8.01E+01
M	4	74.94	71 -	82	2.49E+02	78.06	9.46E+02	5.06E+01
m	5	77.78	71 -	82	4.76E+02	84.70	8.87E+02	4.90E+01
	6	88.34	86 -	91	8.59E+01	79.81	1.20E+03	6.38E+01
	7	128.04	125 -	131	5.71E+01	64.33	7.12E+02	5.14E+01
	8	167.33	165 -	170	5.96E÷01	47.48	4.05E+02	3.69E+01
	9	185.96	182 -	190	1.56E+02	72.24	7.09E+02	2.48E+01
	10	198.68	195 -	203	6.80E+01	66.75	6.44E+02	5.32E+01
М	11	238.98	233 -	246	5.33E+02	56.63	2.88E+02	2.79E+01
m	12	242.23	233 -	246	1.67E+02	62.99	2.82E+02	2.76E+01
M	13	270.34	267 -	283	5.41E+01	43.24	3.24E+02	2.96E+01
m	14	277.96	267 -	283	3.49E+01	47.54	3.31E+02	2.99E+01
М	15	295.69	291 -	306	2.52E+02	42.11	1.81E+02	2.21E+01
m	16	300.61	291 -	306	6.79E+01	41.54	2.30E+02	2.49E+01
	17	338.68	335 -	343	8.44E+01	49.25	3.15E+02	3.76E+01
	18	352.38	348 -	356	3.94E+02	58.20	2.77E+02	3.50E+01
М	19	459.17	458 -	467	1.56E+01	12.45	4.11E+01	1.05E+01
m	20	462.85	458 ~	467	2.90E+01	26.59	1.15E+02	1.77E+01

1603102-06

SEDIMENT 2016-03-16B DUP

1	Peak No.	Energy (keV)	ROI start	ROI end	Net Peak Area	Net Area Uncertainty	Continuum Counts	Critical Level
	21	478.18	474 -	482	8.56E+01	41.81	2.17E+02	3.08E+01
	22	511.55	507 -	516	1.10E+02	40.17	1.63E+02	2.82E+01
	23	583.15	578 -	587	1.21E+02	42.59	1.90E+02	3.00E+01
	24	609.54	604 -	614	3.00E+02	46.80	1.32E+02	2.59E+01
	25	728.02	723 -	732	3.50E+01	30.64	1.12E+02	2.32E+01
	26	768.53	·764 -	772	3.95E+01	29.22	1.05E+02	2.17E+01
	27	786.12	783 -	789	1.77E+01	18.86	5.06E+01	1.39E+01
,	28	794.79	790 -	799	2.69E+01	25.20	7.61E+01	1.89E+01
	29	865,00	858 -	872	4,22E+01	35.04	1.08E+02	2.67E+01
	30	911.39	9 07 –	916	9.25E+01	33.62	1.05E+02	2.27E+01
	31	969.23	966 -	973	4.99E+01	24.00	6.02E+01	1.59E+01
	32	1091.59	1086 -	1095	2.32E+01	19.29	3.95E÷01	1.37E+01
	33	1121.04	1116 -	1126	6.35E+01	27.95	6.69E+01	1.89E+01
	34	1218.18	1212 -	1222	2.24E+01	27.35	8.71E+01	2.11E+01
	35	1432.50	1427 -	1436	1.50E+01	11.40	1.00E+01	6.88E+00
	36	1460.89	1456 -	1464	3.60E+02	38.32	4.53E+00	4.45E+00
	37	1531.64	1529 -	1534	8.15E+00	7.00	3.70E+00	3.33E+00
	38	1593.29	1590 -	1597	1.03E+01	13,42	2.14E+01	9.69E+00
М	39	1626.69	1625 -	1633	6.94E+00	3.74	2.00E+00	2.33E+00
m	40	1630.34	1625 -	1633	1.08E+01	10.00	8.00E+00	4.65E+00
	41	1659.46	1655 -	1664	1.15E+01	10.86	1.11E+01	6.98E+00
	42	1730.78	1726 -	1733	1.02E+01	9.38	7.57E+00	5.64E+00
	43	1764.27	1759 -	1768	4.14E+01	18.47	2.52E+01	1.09E+01
	44	1874.00	1869 -	1876	7.00E+00	5.29	0.00E+00	0.00E+00
	45	1973.17	1969 -	1975	7.00E+00	5.29	0.00E+00	0.00E+00
	46	2103.87	2099 -	2107	9.50E+00	9.82	9.00E+00	6.29E+00
	47	2614.39	2609 -	2617	4.10E+01	12.81	0.00E+00	0.00E+00

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

PEAK WITH NID REPORT

Peak Analysis Performed on

: 4/13/2016 11:13:14AM

Peak Analysis From Channel

: 1

Peak Analysis To Channel

: 4096

Tentative NID Library

: \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB

Peak Match Tolerance

: 1.000 keV

1603102-06

	Peak No.	Energy (keV)	ROI start	ROI end	Peak Centroid	Net Peak Area	Net Area Uncertainty	Continuum Counts	Tentative Nuclide
	1	24.22	21 -	29	24.46	8.05E+01	81.10	9.51E+02	
	2	46.63	44 -	50	46.86	1.03E+02	71.93	8.68E+02	PB-210
	3	62.99	59 -	67	63.21	1.72E+02	100.94	1.47E+03	TH-230 TH-234
М	4	74.94	71 -	82	75.15	2.49E+02	78.06	9.46E+02	AM-243
m	5	77.78	71 -	82	77.99	4.76E+02	84.70	8.87E+02	TI-44
	6	88.34	86 -	91	88.54	8.59E+01	79.81	1.20E+03	LU-176
	-								CD-109 SN-126
	7	128.04	125 -	131	128.22	5.71E+01	64.33	7.12E+02	• • • • •
	8	167.33	165 -	170	167.50		47.48	4.05E+02	• • • • •
	9	185.96	182 -	190	186.11	1.56E+02	72.24	7.09E+02	RA-226
	10	198.68	195 -	203	198.83	6.80E+01	66.75	6,44E+02	
М	11	238.98	233 -	246	239.10	5.33E+02	56.63	2.88E+02	PB-212
m	12	242.23	233 -	246	242.36	1.67E+02	62.99	2.82E+02	
M	13	270.34	267 -	283	270.45	5.41E+01	43.24	3.24E+02	015 040
m	14	277.96	267 -	283	278.07	3.49E+01	67.54	3.31E+02	CM-243 NP-239
M	15	295.69	291 -	306	295.79	2.52E+02	42.11	1.81E+02	PB-214
m	16	300.61	291 -	306	300.70	6.79E+01	41.54	2.30E+02	GA-67 PB-212
				2.42	222 75	0 445 01	40.05	3.15E+02	BI-210M AC-228
	17	338.68	335 -	343	338.75	8.44E+01	49.25 58.20	2.77E+02	PB-214
	18	352.38	348 -	356	352.45	3.94E+02 1.56E+01	12.45	4.11E+01	FD-214
M	19	459.17	458 -	467	459.19 462.87	2.90E+01	26.59	1.15E+02	SB-125
m	20	462.85	453 - 474 -	467 482	478.18	8.56E+01	41.81	2.17E+02	BE-7
	21	478.18 511.55	474 - 507 -	516	511.54	1.10E+02	40.17	1.63E+02	
	22 23	583.15	578 -	587	583.10	1.21E+02	42.59	1.90E+02	TL-208
	23 24	609.54	578 - 604 -	614	609.49	3.00E+02	46.80	1.32E+02	BI-214
	25	728.02	723 -	732	727.90	3.50E+01	30.64	1.12E+02	BI-212
	26	768.53	764 -	772	768.40	3.95E+01	29.22	1.05E+02	
	27	786.12	783 -	789	785.98	1.775+01	18.86	5.06E+01	
	28	794.79	790 –	799	794.64	2.69E+01	25.20	7.61E+01	
	29	865.00	858 -	872	864.83	4.22E+01	35.04	1.08E+02	
	30	911.39	907 -	916	911.19	9.25E+01	33.62	1.05E+02	AC-228
									LU-172
	31	969.23	966 -	973	969.01	4.99E+01	24.00	6.02E+01	AC-228
	32	1091.59	1086-	1095	1091.32	2.32E+01	19.29	3.95E+01	
	33	1121.04	1116 -	1126	1120.75	6.35E+01	27.95	6.69E+01	TA-182 SC-46
					404- 0-	0.04=:04	02 55	0 718:01	BI-214
	34	1218.18	1212 -	1222	1217.85	2.24E+01	27.35	8.71E+01	• • • •
	35	1432.50	1427 -	1436	1432.09	1.50E+01	11.40	1.00E+01	· · · · · ·
	36	1460.89	1456 -	1464	1460.46	3.60E+02	38.32	4.53E+00	K-40
	37	1531.64	1529 -	1534	1531.19	8.15E+00	7.00	3.70E+00 2.14E+01	
	38	1593.29	1590 -	1597	1592.82	1.03E+01	13.42 3.74	2.14E+01 2.00E+00	
M	39	1626.69	1625 -	1633	1626.21	6.94E+00	10.00	8.00E+00	
m	40	1630.34	1625 -	1633	1629.85	1.08E+01 1.15E+01	10.86	1.11E+01	
	41	1659.46	1655 -	1664	1658.97 1730.26	1.13E+01 1.02E+01	9.38	7.57E+00	
	42	1730.78	1726 -	1733	1763.74	4.14E+01	18.47	2.52E+01	BI-214
	43	1764.27	1759 - 1869 -	1768 1876	1873.43	7.00E+00	5.29	0.00E+00	
	44 45	1874.00 1973.17	1969 -	1975	1972.57	7.00E+00	5.29	0.00E+00	
	45	13/3.1/	1303	19/3	1712.01	,.001100	J+2J	_ , , , , ,	

1603102-06

SEDIMENT 2016-03-16B DUP

Peak No.	Energy (keV)	Rù start	ROI end	Peak Centroid	Net Peak Area	Continuum Counts	
46 47	2103.87 2614.39	2099 - 2609 -		2103.23 2613.61	9.50E+00 4.10E+01	 9.00E+00 0.00E+00	

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

PEAK EFFICIENCY REPORT

Peak Analysis Performed on

: 4/13/2016 11:13:14AM

	Peak No.	Energy (keV)	Net Peak Area	Net Area Uncertainty	Peak Efficiency	Efficiency Uncertainty
	1	24,22	8.05E+01	81.10	1.93E-03	1.58E-03
	2	46.63	1.03E+02	71.93	1.51E-02	1.58E-03
	3	62.99	1,72E+02	100.94	2.15E-02	1.70E-03
М	4	74.94	2.49E+02	78.06	2.36E-02	2.09E-03
m	5	77.78	4.76E+02	84.70	2.39E-02	2.19E-03
	6	88.34	8.59E+01	79.81	2.44E-02	2.52E-03
	6 7	128.04	5.71E+01	64.33	2.26E-02	1.70E-03
	8	167.33	5.96E+01	47.48	1,96E-02	1.50E-03
	9	185.96	1.56E+02	72.24	1.83E-02	1.42E-03
	10	198.68	6.80E+01	66.75	1.75E-02	1.36E-03
4	11	238.98	5.33E+02	56.63	1.52E-02	1.18E-03
n	12	242.23	1.67E+02	62.99	1.50E-02	1.16E-03
vi	13	270.34	5.41E+01	43.24	1.38E-02	1.04E-03
n	14	277.96	3.49E+01	47.54	1.35E-02	1.00E-03
M	15	295.69	2.52E+02	42.11	1.28E-02	9.73E-04
m	16	300.61	6.79E+01	41.54	1.26E-02	9.66E-04
•••	17	338.68	8.44E+01	49.25	1.14E-02	9.12E-04
	18	352.38	3.94E+02	58.20	1.105-02	8.93E-04
M	19	459.17	1.56E+01	12.45	8.79E-03	7.70E-04
m	20	462.85	2.90E+01	26.59	8.73E-03	7.66E-04
••	21	478.18	8.56E+01	41.81	8.49E-03	7.51E-04
	22	511.55	1.10E+02	40.17	8.00E-03	7.18E-04
	23	583.15	1.21E+02	42.59	7.14E-03	6.46E-04
	24	609.54	3.00E+02	46.80	6.87E-03	6.20E-04
	25	728.02	3.50E+01	30.64	5.89E-03	5.14E-04
	26	768.53	3.95E+01	29.22	5.62E-03	4.80E-04
	27	786.12	1.77C+01	13.86	5.51E-03	4.66E-04
	28	794.79	2.69E+01	25.20	5.46E-03	4.59E-04

eport for 1603102-06

SEDIMENT 2016-03-16B DUP

	Peak No.	Energy (keV)	Net Peak Area	Net Area Uncertainty	Peak Efficiency	Efficiency Uncertainty	
	29	865.00	4.22E+01	35.04	5.07E-03	4.02E-04	
		911.39	9.25E+01	33.62	4.85E-03	3.72E-04	
	30 31	969.23	4.99E+01	24.00	4.60E-03	3.61E-04	
		1091.59	2.32E+01	19.29	4.17E-03	3.39E-04	
	32	1121.04	6.35E+01	27.95	4.07E~03	3.33E-04	
	33	1218.18	2.24E+01	27.35	3.81E-03	3.14E-04	
	34	1432.50	1.50E+01	11.40	3.84E-03	2.74E-04	
	35		3.60E+02	38.32	3.29E-03	2.69E-04	
	36	1460.89	8.15E+00	7.00	3.17E-03	2.59E-04	
	37	1531.64	1.03E+01	13.42	3.08E-03	2.50E-04	
3.6	38	1593.29	6.94E+00	3.74	3.03E-03	2.44E-04	
M	39	1626.69	1.08E+01	10.00	3.03E-03	2.44E-04	
m	40	1630.34		10.86	2.99E-03	2.40E-04	
	41	1659.46	1.15E+01	9.38	2.90E-03	2.29E-04	
	42	1730.78	1.02E+01	18.47	2.86E-03	2.24E-04	
	43	1764.27	4.14E+01	5.29	2.74E-03	2.13E-04	
	44	1874.00	7.00E+00	5.29	2.64E-03	2.13E-04 2.13E-04	
	45	1973.17	7.00E+00			2.13E-04 2.13E-04	
	46	2103.87	9.50E+00	9.82	2.54E-03	2.13E-04 2.13E-04	
	47	2614.39	4.10E+01	12.81	2.24E-03	Z.IJE-04	

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000 sigma

BACKGROUND SUBTRACT REPORT

Peak Analysis Performed on

: 4/13/2016 11:13:14AM

Env. Background File

: \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035178.CNF

	Peak No.	Energy (keV)	C⊴gìnal Area	Orig. Area Uncertainty	Ambient Background	Backgr. Uncert.	Subtracted Area	Subtracted Uncert.
_	1 2	24.22 46.63	8.05E+01 1.03E+02	81.10 71.93	3.04E+01	2.01E+01	8.05E+01 7.27E+01	8.11E+01 7.47E+01
М	3	62.99 74.94	1.72E+02 2.49E+02	100.94 78.06	5.41E+01	.5.13E+00	1.17E+02 2.49E+02	1.01E+02 7.81E+01
m	5	77.78 88.34	4.76E+02 8.59E+01	84.70 79.81	3.05E+00	2.15E+00	4.76E+02 8.28E+01	8.47E+01 7.98E+01
	6 7	128.04 167.33	5.71E+01 5.96E+01	64.33 47.48	31.0311.00	2.202.00	5.71E+01 5.96E+01	6.43E+01 4.75E+01
	8 9 10	185.96 198.68	1.56E+01 6.80E+01	72.24 66.75	3.82E+01 1.24E+01	5.87E+00 6.03E+00	1.17E+02 5.56E+01	7.25E+01 6.70E+01
M	11	238.98	5.33E+02	56.63	1.06E+01	5.71E+00	5.23E+02	5.69E+01

1603102-06

	Peak No.	Energy (keV)	Original Area	Orig. Area Uncertainty	Ambient Background	Backgr. Uncert.	Subtracted Area	Subtracted Uncert.
— т	12	242.23	1.67E+02	62.99	,		1.67E+02	6.30E+01
Μ	13	270.34	5.41E+01	43.24			5.41E+01	4.32E+01
m	14	277.96	3.49E+01	47.54		·	3.49E+01	4.75E+01
М	15	295.69	2.52E+02	42.11		2 2 2	2.52E+02	4.21E+01
m	16	300.61	6.79E+01	41.54			6.79E+01	4.15E+01
	17	338.68	8.44E+01	49.25			8.44E+01	4.93E+01
	18	352.38	3.94E+02	58.20	0.00E+00	0.00E+00	3.94E+02	5.82E+01
Μ	19	459.17	1.56E+01	12.45			1.56E+01	1.24E+01
m	20	462.85	2.90E+01	26.59			2.90E+01	2.66E+01
	21	478.18	8.56E+01	41.81			8.56E+01	4.18E+01
	22	511.55	1.10E+02	40.17	5.95E+01	4.92E+00	5.01E+01	4.05E+01
	23	583.15	1.21E+02	42.59	5.06E+00	2.98E+00	1.16E+02	4.27E+01
	24	609.54	3.00E+02	46.80	2.01E+00	3.84E+00	2.98E+02	4.70E+01
	25	728.02	3.50E+01	30.64			3.50E+01	3.06E+01
	26	768.53	3.95E+01	29.22			3.95E+01	2.92E+01
	27	786.12	1.77E+01	18.86			1.77E+01	1.89E+01
	28	794.79	2.69E+01	25.20			2.69E+01	2.52E+01
	29	865.00	4.22E+01	35.04			4.22E+01	3.50E+01
	30	911.39	9.25E+01	33.62	2.99E+00	2.93E+00	8.95E+01	3.37E+01
	31	969.23	4.99E+01	24.00			4.99E+01	2.40E+01
	32	1091.59	2.32E+01	19.29	_		2.32E+01	1.93E+01
	33	1121.04	6.35E+01	27.95			6.35E+01	2.80E+01
	34	1218.18	2.24E+01	27.35	•		2.24E+01	2.73E+01
	35	1432.50	1.50E+01	11.40			1.50E+01	1.14E+01
	36	1460.89	3.60E+02	38.32			3.60E+02	3.83E+01
	37	1531.64	8.15E+00	7.00			8.15E+00	7.00E+00
	38	1593.29	1.03E+01	13.42			1.03E+01	1.34E+01
М	39	1626.69	6.94E+00	3.74			6.94E+00	3.74E+00
m	40	1630.34	1.08E+01	10.00			1.08E+01	1.00E+01
	41	1659.46	1.15E+01	10.86		•	1.15E+01	1.09E+01
	42	1730.78	1.02E+01	9.38		•	1.02E+01	9.38E+00
	43	1764.27	4.14E+01	18.47			4.14E+01	1.85E+01
	44	1874.00	7.00E+00	5.29			7.00E+00	5.29E+00
	45	1973.17	7.00E+00	5.29			7.00E+00	5.29E+00
	46	2103.87	9.50E+00	9.82			9.50E+00	9.82E+00
	47	2614.39	4.10E+01	12.81	,		4.10E+01	1.28E+01

M = First peak in a multiplet region m = Other peak in a multiplet region

F = Fitted singlet Errors quoted at 2.000sigma

1603102-06

SEDIMENT 2016-03-16B DUP

AREA CORRECTION REPORT REFERENCE PEAK / BKG. SUBTRACT

Peak Analysis Performed on

: 4/13/2016 11:13:14AM

Ref. Peak Energy

: 0.00

Reference Date

Peak Ratio

Uncertainty

: 0.00

Background File

: 0.00

: \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035178.CNF

Corrected Area is: Original * Peak Ratio - Background

	Peak No.	Energy (keV)	Original Area	Orig. Area Uncertainty	Ambient Background	Backgr. Uncert.	Corrected Area	Corrected Uncert.
	1	24.22	8.05E+01	81.10			8.05E+01	8.11E+01
	2	46.63	1.03E+02	71.93	3.04E+01	2.01E+01	7.27E+01	7.47E+01
	3	62.99	1.72E+02	100.94	5.41E+01	5.13E+00	1.17E+02	1.01E+02
М	4	74.94	2.49E+02	78.06		÷	2.49E+02	7.81E+01
m	5	77.78	4.76E+02	84.70			4.76E+02	8.47E+01
	6	88.34	8.59E+01	79.81	3.05E+00	2.15E+00	8.28E+01	7.98E+01
	7	128.04	5.71E+01	64.33			5.71E+01	6.43E+01
	8	167.33	5.96E+01	47.48	*		5.96E+01	4.75E+01
	9	185.96	1.56E+02	72.24	3.82E+01	5.87E+00	1.17E+02	7.25E+01
	10	198.68	6.80E+01	66.75	1.24E+01	6.03E÷00	5.56E+01	6.70E+01
M	11	238.98	5.33E+02	56.63	1.06E+01	5,710+00	5.23E+02	5.69E+01
m	12	242.23	1.67E+02	62.99			1.67E+02	6.30E+01
M	13.	270.34	5.41E+01	43.24			5.41E+01	4.32E+01
m	14	277.96	3.49E+01	47.54			3.49E+01	4.75E+01
M	15	295.69	2.52E+02	42.11			2.52E+02	4.21E+01
m	16	300.61	6.79E+01	41.54			6.79E+01	4.15E+01
	17	338.68	8.44E+01	49.25			8.44E+01	4.93E+01
	18	352.38	3.94E+02	58.20	0.00E+00	0.00E+00	3.94E+02	5.82E+01
M	19		1.56E+01	12.45		•	1.56E+01	1.24E+01
m	20	462.85	2.905+01	26.59			2.90E+01	2.66E+01
	21	478.18	8.56E+01	41.81			8.56E+01	4.18E+01
	22	511.55	1.10E+02	40.17	5.95E+01	4.92E+00	5.01E+01	4.05E+01
	23	583.15	1.21E+ 0 2	42.59	5.06E+00	2.98E+00	1.16E+02	4.27E+01
	24	609.54	3.00E+02	46.80	2.01E+00	3.84E+00	2.98E+02	4.70E+01
	25	728.02	3.50E+01	30.64			3.50E+01	3.06E+01
	26	768.53	3.95E+01	29.22			3.95E+01	2.92E+01
	27	786.12	1.77E+01	18.86			1.77E+01	1.89E+01
	28	794.79	2.69E+01	25.20			2.69E+01	2.52E+01
	29	865.00	4.22E+01	35.04			4.22E+01	3.50E+01
	30	911.39	9.25E+01	33.62	2.99E+00	2.93E+00	8.95E+01	3.37E+01
	31	969.23	4.99E+01	24.00			4.99E+01	2.40E+01
		1091.59	2.32E+01	19.29			2.32E+01	1.93E+01
		1121.04	6.35E+01	27.95			6.35E+01	2.80E+01
		1218.18	2.24E+01	27.35			2.24E+01	2.73E+01
		1432.50	1.50E+01	11.40			1.50E+01	1.14E+01
		1460.89	3.60E+02	38.32			3.60E+02	3.83E+01
		1531.64	8.15E+00	7.00			8.15E+00	7.00E+00
		1593.29	1.03E+01	13.42			1.03E+01	1.34E+01
M		1626.69	6.94E+00	3.74			6.94E+00	3.74E+00
m		1630.34	i.08E+01	10.00			1.08E+01	1.00E+01
	41	1659.46	1.15E+01	10.86			1.15E+01	1.09E+01

1603102-06

SEDIMENT 2016-03-16B DUP

Peak No.	Energy (keV)	Original Area	Orig. Area Uncertainty	Ambient Background	Backgr. Uncert.	Corrected Area	Corrected Uncert.
43 44 45 46	1730.78 1764.27 1874.00 1973.17 2103.87 2614.39	1.02E+01 4.14E+01 7.00E+00 7.00E+00 9.50E+00 4.10E+01	9.38 18.47 5.29 5.29 9.82 12.81	·		1.02E+01 4.14E+01 7.00E+00 7.00E+00 9.50E+00 4.10E+01	9.38E+00 1.85E+01 5.29E+00 5.29E+00 9.82E+00 1.28E+01

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

NUCLIDE IDENTIFICATION REPORT

Nuclide Library Used

: \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB

IDENTIFIED NUCLIDES

Nuclide Name	ld Confidence	Energy (keV)		¥ield(%)	Activity (pCi/grams)	Activity Uncertainty
BE-7	0.945	477.59	*	10.42	1.95E+00	9.66E-01
K-40	0.999	1460.81	*	10.67	1.43E+01	1.95E+00
CD-109	0.985	88.03	*	3.72	1.33E+00	1.29E+00
SN-126	0.910	87.57	*	37.00	1.28E-01	1.25E-01
TL-208	0.882	583.14	*	30.22	7.54E-01	2.85E-01
111 1100		860.37		4.48		
		2614.66	ş'-	35.85	7.15E-01	2.34E-01
PB-210	0.997	46.50	×	4.25	1.59E+00	1.64E+00
BI-212	0.682	727,17	*	11.80	7.06E-01	6.21E-01
DI 212	• • • • •	1620.62		2.75		
PB-212	0.979	238.63	*	44.60	1.08E+00	1.44E-01
	*	300.09	*	3.41	2.21E+00	1.36E+00
BI-214	0.910	609.31	*	46.30	1.31E+00	2.38E-01
D1 21.		1120.29	*	15.10	1.45E+00	6.47E-01
		1764.49	*	15.80	1.28E+00	5.82E-01
		2204.22		4.98		
PB-214	0.966	295.21	*	19.19	1.43E+00	2.64E-01
ID ZXI	*****	351.92	*	37.19	1.34E+00	2.26E-01
RA-226	0.990	186,21	*	3.28	2.74E+00	5.29E+00
AC-228	0.987	338.32	*	11.40	9.08E-01	5.35E-01
710 220		911.07	×	27.70	9.33E-01	3,59E-01
	•	969.11	*	16.60	9.15E-01	4.46E-01
TH-234	0.986	63.23	*,	3.80	2.01E+00	1.74E+00
AM-243	0.989	74.67	*	66.00	2.24E-01	7.28E-02

1603102-06

SEDIMENT 2016-03-168 DUP

* = Energy line found in the spectrum.

- = Manually added nuclide. ? = Manually edited nuclide.

Energy Tolerance: 1.000 keV

Nuclide confidence index threshold = 0.30

Errors quoted at 2.000sigma

UNIDENTIFIED PEAKS

Peak Locate Performed on

: 4/13/2016 11:13:14AM

Peak Locate From Channel

: 1

Peak Locate To Channel : 4096

Pe	ak No.	Energy (ke\/)	Peak Size (CPS)	Peak CPS (%) Uncertainty	₽eak Type	Tolerance Nuclide
	1	24.22	2.23501E-02	50.39		37
m	5 7	77.78	1.32158E-01	8.90	Tol.	TI-44
	7	128.04	1.58646E-02	56.32		·,
	8	167.33	1.65564E-02	39.83		.
	10	198.68	1.54428E-02	60.28		
m.	12	242.23	4.64577E-02	18.83		
М	13	270.34	1.50316E-02	39.95		
m	1.4	277.96	9.69117E-03	68.13	Tol.	NP-239 CM-243
М	19	459.17	4.331655-03	39.92		
m	20	462.85	8.04785E-03	45.89	Tol.	SB-125
	22	511.55	1.39259E-02	40.37		
	26	768.53	1.09813E-02	36.96	Sum	
	27	786.12	4.91925E-03	53.25		•
	28	794.79	7.48504E-03	46.76	Sum	
	29 (865.00	1.17289E-02	41.49		
	32	1091.59	6.45349E-03	41.51		
	34	1218.18	6.23317E-03	60.94	Sum	
	35	1432,50	4.16667E-03	38.01		
	37	1531.64	2.26389E-03	42.94		
	38 :	1593.23	2.85714E-03	65.22	D-Esc	
M	39	1626.69	1.92765E-03	26.96		
m	40	1630.34	2,99520E-03	46.37		
	41	1659.46	3.18627E-03	47.35		
	42	1730.78	2.83730E-03	45.92	Sum	
	44	1874.00	1.94444E-03	37.80		
	45	1973.17	1.9444F-03	37.80		
	46	2103.87	2.63889E-03	51.70	S-Esc	

1603102-06

SEDIMENT 2016-03-16B DUP

M = First peak in a multiplet region

m = Other peak in a multiplet region

F = Fitted singlet

Errors quoted at 2.000sigma

NUCLIDE IDENTIFICATION REPORT

Nuclide Library Used

: \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB

IDENTIFIED NUCLIDES

Nuclide Name	ld Confidence	Energy (keV)		Yield(%)	Activity (pCi/grams)	Activity Uncertainty	
BE-7	0.94	477.59	*	10.42	1.95E+00	9.66E-01	
K-40	0.99	1460.81	*	10.67	1.43E+01	1.95E+00	
CD-109	0.98	88.03	*	3.72	1.33E+00	1.29E+00	
SN-126	0.91	87.57	*	37.00	1.28E-01	1.25E-01	
TL-208	0.88	583.14	*	30.22	7.54E-01	2.85E-01	
1.5 200		860.37		4.48			
		2614.66	*	35.85	7.15E-01	2.34E-01	
PB-210	0.99	46.50	*	4.25	1.59E+00	1.64E+00	
BI-212	0.68	727.17	*	11.80	7.06E-01	6.21E-01	
DI 212	****	1620.62		2.75			
PB-212	0.97	238.63	ب	44.60	1.08E+00	1.44E-01	
		300.09	*	3.41	2.21E+00	1.36E+00	
BI-214	0.91	609.31	*	46.30	1.31E+00	2.38E-01	
D1 211	,	1120.29	*	15,10	1.45E+00	6,47E-01	
		1764.49	*	15.80	1.28E+00	5.82E-01	
		2204.22		4.98	•		
PB-214	0.96	295.21	*	19.19	1.43E+00	2.64E-01	
115 211	• • • • • • • • • • • • • • • • • • • •	351.92	*	37.19	1.34E+00	2.26E-01	
RA-226	0.99	186.21	*	3.28	2.74E+00	5.29E+00	
AC-228	0.98	338.32	*	11.40	9.08E-01	5.35E-01	
110 220		911.07	*	27.70	9.33E-01	3.59E-01	
		969.11	*	16.60	9.15E-01	4.46E-01	
TH-234	0.98	63.29	*	3 80	2.01E+00	1.74E+00	
AM-243	0.98	74.67	*	66.00	2.24E-01	7.28E-02	

1603102-06

SEDIMENT 2016-03-16B DUP

- * = Energy line found in the spectrum.
- = Manually added nucilde.
- ? = Manually edited nuclide.
- @ = Energy line not used for Weighted Mean Activity

Energy Tolerance: 1.000 keV

Nuclide confidence index threshold = 0.30

Errors quoted at 2.000sigma

INTERFERENCE CORRECTED REPORT

	Nuclide Name	Nuclide id Confidence	Wt mean Activity (pCi/grams)	Wt mean Activity Uncertainty	Comments
	BE-7	0.945	1.95E+00	9.66E-01	
	K-40	0.999	1.43E+01	1.95E+00	
?	CD-109	0.985	1.33E+00	1.29E+00	
?	SN-126	0.910	1.28E-01	1.25E-01	
	TL-208	0.882	7.31E-01	1.81E-01	
-	PB-210	0.297	1.59E+00	1.64E+00	
	BI-212	0.682	7.06E-01	6.21E-01	
	PB-212	0.9 79	1.09E+00	1.44E-01	
	BI-214	0.910	1.32E+00	2.09E-01	
	PB-214	0.966	1.38E+00	1.72E-01	
	RA-226	0.990	2.74E+00	5.29E+00	
	AC-228	0.987	9.22E-01	2.48E-01	
	TH-234	0.986	2.01E+00	1.74E+00	
	AM-243	0.989	2.24E-01	7.28E-02	

- ? = nuclide is part of an undetermined solution
- X = nuclide rejected by the interference analysis
- @ = nuclide contains energy lines not used in Weighted Mean Activity

Errors quoted at 2.000sigma

1603102-06

SEDIMENT 2016-03-16B DUP

UNIDENTIFIED PEAKS

Peak Locate Performed on

: 4/13/2016 11:13:14AM

Peak Locate From Channel Peak Locate To Channel

: 1 : 4096

Pe	ak No.	Energy (keV)	Peak Size (CPS)	Peak CPS (%) Uncertainty	Peak Type	Tolerance Nuclide	
i	1	24.22	2.23561E-02	50.39			
m	5	77.78	1.32158E-01	8.90	Tol.	TI-44	
	7	128.04	1.58646E-02	56.32			
	8	167.33	1.65564E-02	39.83			
	10	198.68	1.54428E-02	60.28			
m	12	242.23	4.64577E-02	18.83			
Mi	13	270.34	1.50316E-02	39.95			-
m.	14	277.96	9.69117E-03	68.13	Tol.	NP-239	
				•		CM-243	
M	19	459.17	4.33165E-03	39.92			
m	20	462.85	8.04785E-03	45.89	Tol.	SB-125	
	22	511.5 5	1.39259E-02	40.37			
	26	768.53	1.09813E-02	36.96	Sum		
	27	786.12	4.91925E-03	53.25			
	28	794.79	7.48504E-03	46.76	Sum		
	29	865.00	1.17289E-02	41.49			
	32	1091.59	6.45349E-03	41.51			
	34	1218.18	6.23317E-03	60.94	Sum		
	35	1432.50	4.16667E-03	33.01			
	37	1531.64	2.26389E-03	42.94			
	38	1593.29	2.85714E-03	65.22	D-Esc		
M	39	1626.69	1.92765E-03	26.96			
m	40	1630.34	2.99520E-03	46.37			
	41	1659.46	3.18627E-03	47.35			
	42	1730.78	2.83730E-03	45.92	Sum		
	44	1874.00	1.94444E-03	37.80			
	45	1973.17	1.94444E-03	37.80			
	46	2103.87	2.63839E-03	51.70	3-Esc		

M = First peak in a multiplet region

m = Other peak in a multiple! region

F = Fitted singlet

Errors quoted at 2.000sigma

1603102-06

SEDIMENT 2016-03-16B DUP

NUCLIDE MDA REPORT

	Nuclide Name	Energy (keV)		Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)		
		(vev)				·			
	BE-7	477.59	*	10.42	1.95E+00	1.46E+00	1.46E+00		
	NA-22	1274.54		99.94	4.35E-03	1.24E-01	1.24E-01		
-	NA-24	1368.53		99.99	-2.45E+11	4.62E+11	2.41E+12		
		2754.09		99.86	0.00E+00		4.62E+11		
	AL-26	1808.65		99.76	1.94E-02	7.93E-02	7.93E-02		
	K-40	1460.81	*	10.67	1.43E+01	4.63E-01	4.63E-01		
	@ AR-41	1293.64		99.16	1.00E+26	1.00E+26	1.00E+26		
,	TI-44	67.88		94.40	1.14E-02	7.00E-02	7.00E-02		
	17 11	78.34		96.00	2.04E-01		8.90E-02	٠.	,
-	SC-46	889.25		99.98	-1.75E-02	1.13E-01	1.13E-01		
	33	1120.51		99.99	2.52E-01		1.96E-01		
	V-48	983.52		99.98	-3.58E-02	2.82E-01	2.82E-01		
		1312.10		97.50	6.05E-02		3.61E-01		
	CR-51	320.08		9.83	4.60E-01	1.35E+00	1.35E+00	54	
	MN-54	834.83		99.97	-2.98E-02	8.84E-02	8.84E-02		
	°CO-56	846.75	•	99.96	3.76E-02	1.03E-01	1.03E-01		
	**	1037.75		14.03	2.35E-01		8.40E-01		
		1238.25		67.00	1.38E-01	•	2.74E-01		
		1771.40		15.51	-1.39E-01		5.71E-01		
		2598.48		16.90	-4.71E-02		4.38E-01		
•	CO-57	122.06		85.51	5.71E-03	6.08E-02	6.08E-02		
		136.48		10.60	-2.95E-01		4.84E-01		
-	CO-58	810.76		99.40	-5.51E-02	9.88E-02	9.88E-02		
-	FE-59	1099.22		56.50	-1.97E-02	2.60E-01	2.60E-01		
		1291.56		43.20	6.20E-02		3.94E-01		
-	CO-60	1173.22		100.00	5.77E-02	8.75E-02	1.12E-01		
		1332.49		100.00	-6.85E-02		8.75E-02		
-	ZN-65	1115.52		50.75	2.83E-02	2.37E-01	2.37E-01		
-	GA-67	93.31		35.70	8.18E+01	6.66E+01	6.66E+01		
		208.95		2.24	1.43E+03		1.23E+03		
		300.22		16.00	-5.56E+02		1.85E+02		
-	SE-75	121.11		16.70	1.66E-01	9.56E-02	3.48E-01		
		136.00		59.20	-3.60E-02		9.56E-02		
		264.65		59.80	2.13E-02		1.25E-01 3.25E-01		
		279.53		25.20	2.66E-01 -3.43E-01		7.32E-01		
	RB-82	400.65 776.52		11.40 13.00	-3.43E-01	1.37E+00	1.37E+00		
├ '	RB-83	520.41		46.00	-5.77E-02	1.72E-01	1.72E-01		
+	KB-03			30.30	8.83E-02	1.725.71	2.95E-01		
		529.64 552.65		16.40	-1,84E-01		5.22E-01		

1603102-06

	Nuclide Name	Energ _y (keV)		Yield(%)	Asűvíty (pGi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)		·
		E40.00		0.42	0 257101	2 21 5 1 0 3	2.31E+01		
+	KR-85	513.99		0.43	2.35E+01	2.31E+01 1.35E-01	1.35E-01		
+	SR-85	513.99		99.27	1.38E-01		1.16E-01		
+	X-88	898.02		93.40	-2.91E-02	1.14E-01	1.14E-01		
	0.314	1836.01		99.38	3.04E-02	7.85E+01	7.85E+01		
+	NB-93M	16.57		9.43	-3.13E+01	8.59E-02	8.59E-02		
+	NB-94	702.63		100.00	1.03E-02	0.596-02	9.13E-02		
	1772 O.F	871.10		100.00	1.18E-02 1.63E-01	1.94E-01	1.94E-01		
+	NB-95	765.79		99.81		8.74E+01	8.74E+01		
+	NB-95M	235.69		25.00	1.35E+02	2.08E-01	2.63E-01		
+	ZR-95	724.18		43.70	1.30E-02	Z.08E-01			
		756.72		55.30 6.20	7.47E-02 1.92E+01	6.48E+02	2.08E-01 9.77E+02		
+	MO-99	181.06			-3.49E+02	0.406102	6.48E+02		
		739.58 778.00		12.80 4.50	3.11E+02		2.09E+03		
+	RU-103	497.08		89.00	-1.15E-01	1.09E-01	1.09E-01		
+	RU-106	621.84		9.80	1.06E-01	8.37E-01	8.37E-01		
	AG-108M	433.93		89.90	2.03E-03	8.11E-02	3.11E-02	ÿ-	
-i-	AG-100M			90.40	-1.02E-02	5.410 02	1.02E-01		
		614.37 722.95		90.40	1.16E-02		8.59E-02	e e	
+	CD-109	88.03	k	3.72	1.33E+00	2.10E+00	2.10E+00	j.	
+	AG-110M	657.75		93.14	-8.26E-02	9.00E-02	9.00E-02	•	
	110 44011	677.61	-	10.53	-1.63E-01		7.94E-01		
		706.67		16.46	-4.31E-02		5.32E-01		
		763.93		21.98	1.73E-02		4.50E-01		
		884.67		71.63	4.81E-02		1.40E-01		
		1384.27		23.94	-1.10E-01	0 77m 100	4.42E-01		
+	CD-113M	263.70		0.02	1.82E+01	2.77E+02	2.77E+02		
+	SN-113	255.12		1.93	-1.20E+00	1.38E-01	3.89E+00		
		391.69		64.90	3.80E-02	7 050 02	1.38E-01 7.05E-02		
+	TE123M	159.00		84.10	-1.11E-02	7.05E-02 1.16E-01	1.16E-01		
+	SB-124	602.71		97.87	-1.94E-02	1.10E-01			
		645.85		7.26 11.10	-2.00E-02 1.31E-01		1.52E+00 9.65E-01		
		722.78 1691.02		49.00	8.02E-02		2.33E-01		
+	I-125	35.49		6.49	-3.09E-02	2.77E+00	2.77E+00		
+	SB-125	176.33		6.89	-1.63E-01	2.31E-01	7.74E-01		
•	05 120	427.89		29.33	-8.85E-03		2.31E-01		
		463.38		10.35	3.14E-01		7.75E-01		
		600.56		17.80	-3.87E-02		4.67E-01	•	
	•	635.90		11.32	5.28E-02		6.97E-01		
+	SB-126	414.70		83.30	1.59E-01	3.73E-01			
		666.33		99.60	-9.07E-02		4.04E-01		
		695.00		99.60	-6.07E-02 -2.14E-02		3.73E-01 7.13E-01		
ı	SN-126	720.50 87.57	*	53.80 37.00	1.28E-01	2.02E-01			
+				25.00	-5.37E+00	3.56E+01			
+	SB-127	473.00			1.43E+01	J.J01101	3.56E+01		
		685.20 783.80		35.70 14.70	-3.56E-01		8.94E+01		
		103.00		14.70	J.JOE-OI		0.010.01		

1603102-06

	Nuclide Name	Energy (keV)	Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
+	I-129	29.78	57.00	1.81E-01	4.21E-01	4.21E-01	
'	1 125	33.60	13.20	4.13E-01		1.21E+00	
		39.58	7.52	4.21E-01	•	1.36E+00	
+	I-131	284.30	6.05	7.08E-02	9.31E-01	1.15E+01	
		364.48	81.20	2.84E-01	**************************************	9.31E-01	
		636.97	7.26	6.23E+00		1.21E+01	
		722.89	1.80	6.46E+00	0 600.01	4.77E+01	
+	TE-132	49.72	13.10	-3.82E+01	2.68E+01	2.10E+02	
		228.16	88.00	-4.83E+00	1 71501	2.68E+01 1.84E-01	
+	BA-133	81.00	33.00	-7.92E-01	1.71E-01	4.08E-01	
		302.84	17.80	1.41E-01 -5.84E-04		1.71E-01	
	I-133	356.01 529.87	60.00 86.30	1.19E+08	3.98E+08	3.98E+08	
+	XE-133	81.00	38.00	-2.73E+01	6.33E+00	6.33E+00	
+-		563.23	8.38	-2,92E-01	9.32E-02	9.44E-01	
+ .	CS-134	569.32	15.43	1.21E-01	7.525 02	5.63E-01	
		604.70	97.60	-1.70E-02		9.32E-02	
		795.84	85.40	4.16E-02		1.11E-01	
	44	801.93	8.73	1.30E-01		9.88E-01	
+	CS-135	268.24	16.00	-1.06E-02	4,35E-01	4.35E-01	·
+	@ I-135	1131.51	22.50	1.001+26	1.00E+26	1.00E+26	
	@	1260.41	28.60	1.00E+26		1.00E+26	
	@	1678.03	9.54	1.00E+26	•	1.00E+26	
+	CS-136	153.22	7.46	8.51E-01	3.60E-01	3.05E+00	
		163.89	4.61	-1.49E-01		4.53E+00	
		176.55	13.56	-2.66E-01		1.68E+00	
		273.65	12.66	-9.82E-01		2.39E+00	
		340.57	48.50 99.70	8.33E-01 -4.59E-02		7.57E-01 3.60E-01	
		818.50 1048.07	79.60	1.13E-01		5.63E-01	
		1235.34	19.70	6.21E-01		3.10E+00	
+	CS-137	661.65	85.12	1.25E-02	1.04E-01	1.04E-01	
+	LA-138	788.74	34.00	-7.64E-02	1.50E-01	2.35E-01	
	1	1435.80	66.00	-3.18E-03		1.50E-01	
+	CE-139	165.85	80.35	6.44E-03	7.20E-02	7.20E-02	
+	BA-140	162.64	6.70	-2.44E-01	1.25E+00	3.22E+00	
	ŧ	304.84	4.50	-1.49E-01		6.57E+00	
		423.70	3.20	-3.91E+00		8.99E+00	
		437.55	2.00	-2.06E+00		1.62E+01	
		537.32	25.00	-3.15E-01	4 600 01	1.25E+00 1.45E+00	
+	LA-140	328.77	20.50	-3.44E-02	4.60E-01		
		487.03	45.50	-7.51E-02 1.01E-01		6.81E-01 1.59E+00	
		815.85 1596.49	23.50 95.49	-2.16E-02		4.60E-01	
+	CE-141	145.44	48.40	8.74E-02	2.00E-01		
+	CE-141	57.36	11.80	5.50E+04	2.93E+05		
т	CE-142	293.26	42.00	5.85E+05		2.93E+05	
		664.55	5.20	9.34E+05		2.26E+06	
+	CE-144	133.54	10.80	-1.61E-01		4.73E-01	
•				•	•		

1603102-06

	Nuclide	Energy	Yield(%)	Activity	Nuclide MDA	Line MDA	
	Name	(keV)		(pCi/grams)	(pCi/grams)	(pCi/grams)	
		(1.00)					
		10.5.30	40.00	0 077 01	0.00= 00	2.54E-01	
+	PM-144	476.78	42.00	2.27E-01	8.00E-02		
		618.01	98.60	-2.02E-02	•	8.00E-02	
		696.49	99.49	-1.48E-02	2 005 01	8.40E-02	
+	PM-145	36.85	21.70	1.07E-01	3.02E-01	5.56E-01	
		37.36	39.70	9.10E-02		3.02E-01	
		42.30	15.10	-1.65E-01		6.08E-01	
		72.40	2.31	-6.30E+00	1 077 01	3.19E+00	
+	PM-146	453.90	39.94	-2.09E-02	1.87E-01	1.87E-01	
		735.90	14.01	3.48E-01		5.81E-01	
		747.13	13.10	4.50E-01		7.32E-01	
+	ND-147	91.11	28.90	2.27E-01	1,31E+00	1.31E+00	•
		531.02	13.10	3.97E-01		3.11E+00	
+	PM-149	285.90	3.10	2.48E+02	1.22E+04	1.22E+04	
+	EU-152	121.78	20.50	2.23E-02	2.37E-01	2.37E-01	
		244.69	5.40	-9.22E-02		1.45E+00	
		344.27	19.13	1.76E-02		3.51E-01	•
		778.89	9.20	2.48玉-01		9.24E-01	
		964.01	10.40	3.34E-01		9.81E-01	N.
		1085.78	7.22	-1.63E-01		9.65E-01	
		1112.02	9.60	1.09E-01		i.12E+00	
		1407.95	14.94	-3.08E-01		6.39E-01	
+	GD-153	97.43	31.30	-1.44E-01	1.71E-01	1.71E-01	
		103.18	22.20	-3.16E-02		2.28E-01	
+	EU-154	123.07	40.50	-1.20E-03	1.20E-01	1.20E-01	
		723.30	19.70	5.38E-02		3.97E-01	
		873.19	11.50	2.44E-02		7.55E-01	
		996.32	10.30	-3.30E-01		9.07E-01	
		1004.76	17.90	3.42E-02		5.26E-01	
		1274.45	35.50	1.21E-02		3.44E-01	
į.	EU-155	86.50	30.90	1.34E-01	2.16E-01	2.16E-01	
		105.30	20.70	-4.39E-03		2.29E-01	
+	EU-156	811.77	10.40	-5.72E-01	2.60E+00	2.60E+00	
		1153.47	7.20	6.75E-01		4.99E+00	
		1230.71	8.90	-2.19E+00		4.67E+00	
4.	HO-166M	184.41	72.60	1.65E-01	9.45E-02	9.45E-02	
		280.45	29.60	1.27E-01		2.29E-01	
		410.94	11.10	4.56E-02	•	6.77E-01	
		711.69	54.10	-1.29E-02		1.48E-01	
+	TM-171	66.72	0.14	-3.97E-01	4.90E+01	4.90E+01	
+	HF-172	81.75	_~ 4.52	-3.62E-01	4.44E-01	1.35E+00	
		125.81	11.30	-2.63E-01		4.44E-01	
+	LU-172	181.53	20.60	-4.43E-01	2.91E+00		
•		810.06	16.63	-4.79E+00		8.03E+00	
		912.12	15.25	3.15E+01	€"	1.87E+01	
		1093.66	62.50	-5.20E-01		2.91E+00	
-+-	LU-173	100.72	5.24	-1.40E-01	3.52E-01		
•		272.11	21.20	2.13E-01		3.52E-01	
+	HF-175	343.40	84.00	6.81E-03	1.10E-01		
	LU-176	88.34	13.30	1.39E-01	7.00E-02		
+	TO-110	00.34	10.00	7.050.07	7.000 02	0,00 <u>D</u> 01	

1603102-06

	Nuclide Name	Energy (keV)		Yīeld(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
	LU-176	201.83		86.00	-9.11E-03	7.00E-02	7.77E-02	
	ПО-170	306.78		94.00	2.06E-02		7.00E-02	
+	TA-182	67.75		41.20	3.09E-02	1.90E-01	1.90E-01	
		1121.30		34.90	5.37E-01		5.11E-01	
		1189.05		16.23	-1.91E-02		7.31E-01 5.32E-01	
		1221.41 1231.02		26.98 11.44	-1.23E-01 5.95E-02		1.23E+00	
+	IR-192	308.46		29.68	2.09E-02	1.82E-01	2.78E-01	
	IN 132	468.07		48.10	5.81E-03	•	1.82E-01	
+	HG-203	279.19		77.30	7.54E-02	1.37E-01	1.37E-01	
+	BI-207	569.67		97.72	-3.55E-03	8.47E-02	8.47E-02	
		1063.62		74.90	-8.62E-03		1.12E-01	
+	TL-208	583.14	*	30.22	7.54E-01	4.72E-02	4.11E-01	
		860.37		4.48	6.28E-01		2.22E+90	
	77 C 2 C 14	2614.66	*	35.85	7.15E-01 2.00E-02	1,44E-01	4.72E-02 1.44E-01	
+	BI-210M	262.00 300.00		45.00 23.00	-1.03E+00	I,44D Or	3.43E-01	
+	PB-210	46.50	*	4.25	1.59E+00	2.68E+C0	2.68E+00	
+	PB-211	404.84		2.90	-2.65E-01	2.51E+00	2.51E+00	i.
'	117 211	831.96		2.90	-5.74E-01		2.89E+00	
+	BI-212	727.17	*	11.80	7.06E-01	9.92E-01	9.92E-01	•
		1620.62		2.75	8.37E-02		3.37E+00	
+	PB-212	238.63	*	44.60	1.08E+00	2.68E-01	2.68E-01	
		300.09	*	3.41	2.21E+00	G 513 - 01	3.85E+00	
۲	BI-214	609.31	*	46.30	1.31E+00	2.42E-01	2.42E-01	
		1120.29	*	15.10	1.45E+00 1.28E+00		9.21E-01 7.60E-01	
		1764.49 2204.22	^	15.80 4.98	4.57E-01		2.22E+00	
+	PB-214	295.21	*	19.19	1.43E+00	2.48E-01	6.68E-01	
		351.92	*	37.19	1.34E+00		2.48E-01	
+	RN-219	401.80		6.50	-6.04E-02	1.12E+00	1.12E+00	
+	RA-223	323.87		3.88	-8.66E-01	1.59E+00	1.59E+00	
+	RA-224	240.98		3.95	1.55E+01	3,21E+00	3.21E+00	
+	ra ⁱ -225	40.00		31.00	3.67E-01	1.19E+00	1.19E+00	
+	RA-226	186.21	*	3.28	2.74E+00	2.72E+00	2,72E+00	
+	TH-227	50.10		8.40	-1.57E-01	8.62E-01	8.62E-01	
		236.00		11.50	1.39E+00		9.01E-01 9.98E-01	
	70.000	256.20	*	6.30 11.40	-4.29E-01 9.08E-01	5.07E-01		
+	AC-228	338.32 911.07	*	27.70	9.33E-01	3.075 01	5.07E-01	
		969.11	*	16.60	9.35E-01 9.15E-01		6.35E-01	
+	TH-230	48.44		16.90	4.19E-01	5.03E-01		
•		62.85		4.60	1.14E+00		1.59E+00	
		67.57		0.37	2.91%+00		1.79E+01	
+	PA-231	283.67		1.60	2.42E-02			
		302.67		2.30	1.09E+00		3.14E+00 3.20E+00	
+	TH-231	25.64		14.70	1.55±+00		9.29E-01	
		84.21		6.40	-4.50E-02		3. Z 7E-UI	

1603102-06

SEDIMENT 2016-03-16B DUP

	Nuclide Name	Energy (keV)		Yield(%)	Activity (pCi/grams)	Nuclide MDA (pCi/grams)	Line MDA (pCi/grams)	
	PA-233	311.98		38.60	5.77E-02	3.5:E-01	3.51E-01	
+	PA-233	131.20		20.40	2.16E-02	2.52E-01	2.52E-01	
+	PA-234	733.99 946.00		8.80 12.00	2.34E-01 -5.55E-01		8.85E-01 6.68E-01	
+	PA-234M	1001.03		0.92	-8.85E-01	1.07E+01	1.07E+01	
+	TH-234	63.29	*	3.80	2.01E+00	2.83E+00	2.83E+00	
4.	U-235	143.76		10.50	-2.19E-01	4.82E-01	4.82E-01	
		163.35 205.31		4.70 4.70	-3.37E-02 2.78E-01		1.02E+00 1.49E+00	
+	NP-237	86.50		12.60	3.25E-01	5.24E-01	5.24E-01	
+	NP-239	106.10		22.70	1.65E+02	7.60E+02	7.60E+02	
		228.18 277.60		10.70 14.10	-3.86E+02 9.78E+02	1 000 0	2.14E+03 1.80E+03	
+	AM-241	59.54		35.90	-1.87E-01	1.82E-0i	L.82E-01	
+	AM-243	74.67	*	66.00	2.24E-01	1.84E-01	1.84E-01	
+	CM-243	209.75		3.29	1.69E+00	4.98E-01	2.17E+00	
		228.14 277,.60		10.60 14.00	-1.07E-01 2.70E-01		5.92E-01 4.98E-01	

^{+ =} Nuclide identified during the nuclide identification

NUCLIDE MDA REPORT

Nuclide Library Used : \\OR-GAMMA1\ApexRcot\Countroom\Library\TMA2.NLB

5.	Nuclide Name	Energy (⊱∘V)	Yield(%)	Line MDA (pCi/grams)	Nuclide MDA (pC:/gr∌ms)	Activity (pCi/grams)	Dec. Level (pCi/grams)
+.	BE-7 NA-22 NA-24	477.59 * 1274.54 1368.53 2754.09	10.42 99.94 99.99 99.86	1.46E+00 1.24E-01 2.41E+12 4.62E+11	1.46E+00 1.24E-01 4.62E+11	1.95E+00 4.35E-03 -2.45E+11 0.00E+00	7.01E-01 5.66E-02 1.06E+12 0.00E+00

^{* =} Energy line found in the spectrum

> = MDA value not calculate::

^{@ =} Half-life too short to be able to perform the decay correction

⁼ CAUTION: MDA value is inconsistent with Currie MDA at 95% confidence level

1603102-06

	Nuclide	Energy	Yield(%)	Line MDA	Nuclide MDA	Activity	Dec. Level
	Name	(ke∀)		(pCi/grams)	(pCi/grams)	(pCi/grams)	(pCi/grams)
	AL-26	1808,65	99.76	7.93E-02	7.93E-02	1.94E-02	3.29E-02
÷	K-40	1460.81 *		4.63E-01	4.63E-01	1.43E+01	1.78E-01
	AR-41	1293.64	99.16	1.00E+26	1.00E+26	1.00E+26	1.00E+20
	TI-44	67.88	94.40	7.00E-02	7.00E-02	1.14E-02	3.41E-02
	11 44	78.34	96.00	8.90E-02	•	2.04E-01	4.37E-02
•	SC-46	889.25	99.98	1.13E-01	1.13E-01	-1.75E-02	5.17E-02
	DC 40	1120.51	99.99	1.96E-01	N	2.52E-01	9.23E-02
	V-48	983.52	99.98	2.82E-01	2.82E-01	-3.58E-02	1.27E-01
	A = 4.0	1312.10	97.50	3.61E-01		6.05E-02	1.62E-01
	CR-51	320.08	9.83	1.35E+00	1.35E+00	4.60E-01	6.43E-01
	MN-54	834.83	99.97	8.84E-02	8.84E-02	-2.98E-02	4.03E-02
	CO-56	846.75	99.96	1.03E-01	1.03E-01	3.76E-02	4.70E-02
	CO-36	1037.75	14.03	8.40E-01		2.35E-01	3.80E-01
		1238.25	67.00	2.74E-01		1.38E-01	1.27E-01
		1771.40	15.51	5.71E-01		-1.39E-01	2.31E-01
		2598.48	16.90	4.38E-01		-4.71E-02	1.55E-01
	GO 57	122.06	85.51	6.08E-02	6.08E-02	5.71E-03	2.93E-02
	CO-57			4.84E-01	0.005.02	-2.95E-01	2.33E-01
	go 50	136.48	10.60	9.88E-01	9,88E-02	-5.51E-02	4.47E-02
	CO-58	810.76	99.40	2.60E-01	2.60E-01	-1.97E-02	1.18E-01
	FE-59	1099.22	56.50	3.94E-01	2.005-01	6.20E-02	1.78E-01
		1291.56	43.20	1.12E-01	8.755-02	5.77E-02	5.10E-02
	CO-60	1173.22	100.00		0.70E;=02	-6.85E-02	3.83E-02
		1332.45	100.00	8.75E-02	2.37E-01	2.83E-02	1.09E-01
	ZN-65	1115.52	50.75	2.37E-01	· ·	8.18E+01	3.25E+01
	GA-67	93.31	35.70	6.66E+01	6.66E+01	1.43E+03	5.97E+02
		208.95	2.24	1.23E+03		-5.56E+02	8.88E+01
		300.22	16.00	1.85E+02	0 565 03	1.66E-01	1.68E-01
	SE-75	121.11	16.70	3.48E-01	9.56E-02	-3.60E-01	4.61E-02
		136.00	59.20	9.56E-02		2.13E-02	5.97E-02
	•	264.65	59.80	1.25E-01		2.66E-01	1.56E-01
		279.53	25.20	3.25E-01		-3.43E-01	3.46E-01
		400.65	11.40	7.32E-01	1 075100	-3.79E-02	6.29E-01
	RB-82	776.52	13.00	1.37E+00	1.37E+00		7.95E-02
	RB-83	520.41	46.00	1.72E-01	1.72E-01	-5.77E-02	1.38E-01
		529.64	30.30	2.95E-01		8.83E-02	2.42E-01
		552.65	16.40	5.22E-01	0.015.03	-1.84E-01	
	KR-85	513.99	0.43	2.3TE+01	2.31E+01	2.35E+01	1.10E+01
	SR-85	513.99	99.27	1.35E-01	1.35E-01	1.38E-01	6.45E-02
	Y-88	898.02	93.40	1.16E-01	1.14E-01	-2.91E-02	5.32E-02
		1836.01	99.38	1.14E-01		3.04E-02	4.90E-02
	NB-93M	16.57	9.43	7.85E+01	7.85E+01	-3.13E+01	3.81E+01
	NB-94	702.63	100.00	8.59E-02	8.59E-02	1.03E-02	3.98E-02
		871.10	100.00	9.13E-02		1.18E-02	4.19E-02
	NB-95	765.79	99.81	1.94E-01	1.94E-01	1.63E-01	9.11E-02
	NB-95M	235.69	25.00	8.74E+01	8.74E+01	1.35E+02	4.26E+01
	ZR-95	724.13	43.70	2.63E-01	2.08E-01	1.30E-02	1.22E-01
		756.72	55.30	2.08E-01		7.47E-02	9.60E-02
	MO-99	181.06	6 20	9.77E+02	6.48E+02	1.92E+01	4.70E+02
		739.58	12.80	6.48E+02		-3.49E+02	2.95E+02
		778.00	4.50	2.09E+03		3.11E+02	9.59E+02
	RU-103	497.08	89.00	1.09E-01	1.09E-01	-1.15E-01	5.05E-02
	RU-106	621.84	9.80	8.37E-01	8.37E-01	1.06E-01	3.88E-01
	AG-108M	433.93	89.90	8.11E-02	8.11E-02	2.03E-03	3.83E-02

1603102-06

				•			
	Nuclide	Energy	Yield(%)	Line MDA	Nuclide MDA	Activity	Dec. Level
	Name	(keV)		(pCi/grams)	(pCi/grams)	(pCi/grams)	(pCi/grams)
	AG-108M	614.37	90.40	1.02E-01	8.11E-02	-1.02E-02	4.79E-02
		722.95	90.50	8.59E-02		1.16E-02	3.94E-02
+	CD-109	88.03 *	3.72	2.10E+00	2.10E+00	1.33E+00	1.03E+00
	AG-110M	657.75	93.14	9.00E-02	9.00E-02	-8.26E-02	4.16E-02
		677.61	10.53	7.94E-01		-1.63E - 01	3.66E-01
		706.67	16.46	5.32E-01		-4.31E-02	2.45E-01
		763.93	21.98	4.50E-01		1.73E-02	2.08E-01
		884.67	71.63	1.40E-01		4.81E-02	6.40E-02
		1384.27	23.94	4.42E-01		-1.10E-01	1.96E-01
	CD-113M	263.70	0.02	2.77E+02	2.77E+02	1.82E+01	1.33E+02
	SN-113	255.12	1.93	3.89E+00	1.38E-01	-1.20E+00	1.87E+00
		391.69	64.90	1.38E-01		3.80E-02	6.58E-02
	TE123M	159.00	84.10	7.05E-02	7.05E-02	-1.11E-02	3.39E-02
	SB-124	602.71	97.87	1.16E-01	1.16E-01	-1.94E-02	5.42E-02
		645.85	7.26	1.52E+00		-2.00E-02	7.02E-01
		722.78	11.10	9.65E-C1		1.31E-01	4.43E-01
		1691.02	49.00	2.33E-01		8.02E-02	9.84E-02
	I-125	35.49	6.49	2.77E+00	2.77FH00	-3.09E - 02	1.34E+00
	SB-125	176.33	6.89	7.74E-01	2.31E-01	-1.63E-01	3.72E-01
		427.89	29.33	2.31E-01		-8.85E-03	1.08E-01
		463.38	10.35	7.75E-01		3.14E-01	3.66E-01
		600.56	17.80	4.67E-01		-3.87E-02	2.18E-01
		635.90	11.32	6.97E-01		5.28E-02	3.23E-01
	SB-126	414.70	83.30	4.17E-01	3.73E-01	1.59E-01	1.97E-01
		666.33	99.60	4.04E-01		-9.07E-02	1.88E-01
		695.00	99.60	3.73E-01		-6.07E-02	1.72E-01
		720.5	53.80	7.13E-01		-2.14E-02	3.29E-01
+	SN-126	87.57 *	37.400	2.02E-01	2.02E-01	1.28E-01	9.91E-02
	SB-127	473.00	25.00	4.60E+01	3.56E+01	-5.37E+00	2.17E+01
		685.20	35.70	3.56E+01	•	1.43E+01	1.65E+01
		783.80	14.70	8.94E+01		-3.56E-01	4.12E+01
	I - 129	29.78	57.00	4.21E-01	4.21E-01	1.81E-01	2.04E-01
		33.60	13.20	1.21E+00		4.13E-01	5.84E-01
		39.58	7.52	1.36E+00		4.21E-01	6.57E-01
	I-131	284.30	6.05	1.15E+01	9.31E-01	7.08E-02	5.50E+00
		364.48	81.20	9.31E-01		2.84E-01	4.41E-01
	i	636.97	7.26	1.21E+01		6.23E+00	5.62E+00
		722.89	1.80	4.77E+01		6.46E+00	2.19E+01
	TE-132	49.72	13.10	2.10E+02	2.68E+01	-3.82E+01	1.02E+02
		228.16	88,00	2.68E+01		-4.83E+00	1.29E+01
	BA-133	81.00	33.00	1.84E-01	1.71E-01	-7.92E-01	8.96E-02
		302.84	17.80	4.08E-01		1.41E-01	1.96E-01
		356.01	60.00	1.71E-01	0.0000	-5.84E-04	8.28E-02
	1-133	529.87	86.30	3.98E+08	3.98E+08	1.19E+08	1.85E+08
	XE-133	81.00	38.00	6.33E+00	6.33E+00	-2.73E+01	3.08E+00
	CS-134	563.23	8.38	9.44E-01	9.32E-02	-2.92E-01	4.40E-01
		5€9.32	15.43	5.63E-01		1.21E-01	2.64E-01
		604.70	97.50	9.32E-02		-1.70E-02	4.37E-02
		795.34	85.40	1.11E-01		4.16E-02	5.13E-02
		801.93	8.73	9.88E-01	4 00- 0-	1.30E-01	4.53E-01
	CS-135	268.23	16.00	4.35E-01	4.35E-01	-1.06E-02	2.09E-01
	@ I-135	1131.51	22 50	1.00E+26	1.00E+26	1.00E+26	1.00E+20
	@ "	1260.41	28.60	1.00E+26		1.00E+26	1.00E+20

Analysis Report for 1603102-06

Nuclide	Energy	Yielď(%)	Line MDA	Nuclide MDA	Activity	Dec. Level
Name	(ke\/)		(pCi/grams)	(pCi/grams)	(pCi/grams)	(pCi/grams)
@ I-135	1678.03	9.54	1.00E+26	1.00E+26	1.00E+26	1.00E+20
CS-136	153.22	7.46	3.05E+00	3.60E-01	8.51E-01	1.47E+00
	163.89	4.61	4.53E+00		-1.49E-01	2.17E+00
	176.55	13.56	1.68E+00		-2.66E-01	8.10E-01
	273.65	12.66	2.39E+00		-9.82E-01	1.15E+00
	340.57	48.50	7.57E-01		8.33E-01	3.64E-01
	818.50	99.70	3.60E-01		-4.59E-02	1.64E-01
	1048.07	79.60	5.63E-01		1.13E-01	2.57E-01
	1235.34	19.70	3.10E+00	1 047 03	6.21E-01	1.44E+00
CS-137	661.65	85.12	1.04E-01	1.04E-01	1.25E-02	4.87E-02 1.08E-01
LA-138	788.74	34.00	2.35E-01	1.50E-01	-7.64E-02 -3.18E-03	6.62E-02
	1435.80	66.00	1.50E-01	7 000 00	6.44E-03	3.46E-02
CE-139	165.85	80.35	7.20E-02	7.20E-02 1.25E+00	-2.44E-01	1.55E+00
BA-140	162.64	6.70	3.22E+00	1.25E+00	-1.49E-01	3.13E+00
	304.84	4.50	6.57E+00 8.99E+00		-3.91E+00	4.21E+00
	423.70	3.20	1.62E+01		-2.06E+00	7.64E+00
	437.55	2.00	1.02E+01 1.25E+00		-3.15E-01	5.81E-01
T. N. 1.40	537.32	25.00	1.45E+00	4.60E-01	-3.44E-02	6.87E-01
LA-140	328.77	20.50 45.50	6.81E-01	4.00E 01	-7.51E-02	3.18E-01
	467.03 815.85	23.50	1.59E+00		1.01E-01	7.26E-01
•	1596.49	95.49	4.60E-01		-2.16E-02	2.01E-01
CE-141	145.4	48.40	2.00E-01	2.00E-01	8.74E-02	9.67E-02
CE-143	57.36	11.80	7.21E+05	2.93E+05	5.50E+04	3.50E+05
CE-140	293.26	42.00	2.93E+05		5.85E+05	1.42E+05
	664.55	5.20	2.26E+06		9.34E+05	1.06E+06
CE-144	133.54	10.80	4.73E-01	4.73E-01	-1.61E-01	2.28E-01
PM-144	476.78	42.00	2.54E-01	8.00E-02	2.27E-01	1.21E-01
*** ***	618.01	98.60	8.00E-02		-2.02E-02	3.70E-02
	696.49	99.49	8.40E-02		-1.48E-02	3.87E-02
PM-145	36.85	21.70	5.56E-01	3.02E-01	1.07E-01	2.69E-01
	37.36	39.70	3.02E-01		9.10E-02	1.46E-01
	42.30	15.10	6.08E-01		-1.65E-01	2.94E-01
	72.40	2.31	3.19E+00		-6.30E+00	1.56E+00
PM-146	453.90	39.94	1.87E-01	1.87E-01	-2.09E-02	8.80E-02
	735.90	14.01	5.81E-01		3.48E-01	2.67E-01
	747.13	13.10	7.32E-01		4.50E-01	3.41E-01
ND-147	91.11	28.90	1.31E+00	1.31E+00	2.27E-01	6.38E-01
: 	531.02	13.10	3.11E+00		3.97E-01	1.44E+00
PM-149	285.90	3.10	1.22E+04	1.22E+04	2.48E+02	5.83E+03
EU-152	121.78	20.50	2.37E-01	2.37E-01	2.23E-02	1.14E-01
	244.69	5.40	1.45E+00		-9.22E-02	7.02E-01
:	344.27	19.13	3.51E-01		1.76E-02	1.67E-01
	778.89	9.20	9.24E-01		2.48E-01	4.25E-01
	964.01	10.40	9.81E-01		3.34E-01	4.51E-01
	1085.78	. 7.22	9.65E-01		-1.63E-01	4.19E-01 5.12E-01
	1112.02	9.60	1.12E+00		1.09E-01 -3.08E-01	2.82E-01
	1407.95	14.94	6.39E-01	1 715 01		8.28E-02
GD-153	97.43	31.30	1.71E-01	1.71E-01	-1.44E-01 -3.16E-02	1.10E-01
	103.18	22.20	2.28E-01	1 000 01	-3.16E-02 -1.20E-03	5.80E-02
EU-154	123.07	40.50	1.20E-01	1.20E-01	5.38E-02	1.82E-01
	723.30	19.70	3.97E-01		2.44E-02	3.45E-01
	873.19	11.50	7.55E-01		Z.44E-UZ	O. JOH OI

Analysis Report for 1603102-06

	_	DIMENT 2010 0	0 101					
	Nuclide	Energy		Yield(%)	Line MDA	Nuclide MDA	Activity	Dec. Level
	Name	(keV)			(pCi/grams)	(pCi/grams)	(pCi/grams)	(pCi/grams)
w-^ -	EU-154	996.32		10.30	9.07E-01	1,20E-01	-3.30E-01	4.13E-01
	F0-T24	1004.76		17.90	5.26E-01		3.42E-02	2.39E-01
		1274.45		35.50	3.44E-01		1.21E-02	1.57E-01
	EU-155	86.50		30.90	2.16E-01	2.16E-01	1.34E-01	1.05E-01
	E0-133	105.30		20.70	2.29E-01		-4.39E-03	1.10E-01
	EU-156	811.77		10.40	2.60E+00	2.60E+00	-5.72E-01	1.18E+00
	F0-120	1153.47		7.20	4.99E+00		6.75E-01	2.26E+00
		1230.71		8.90	4.67E+00	•	-2.19E+00	2.13E+00
	110 1 C CM	184.41		72.60	9.45E-02	9.45E-02	1.65E-01	4.58E-02
	HO-166M	280.45		29.60	2.29E-01	3.10 <u>,</u> 2 02	1.27E-01	1.09E-01
		410.94		11.10	6.77E-01	r"	4.56E-02	3.21E-01
				54.10	1.48E-01		-1.29E-02	6.81E-02
	mr. 171	711.69		0.14	4.90E+01	4.90E+01	-3.97E-01	2.39E+01
	TM-171	66.72		4.52	1.35E+00	4.44E-01	-3.62E-01	6.57E-01
	HF-172	81.75		11.30	4.44E-01	T. TT. OT	-2.63E-01	2.14E-01
	450	125.81			4.51E+00	2.91E+00	-4.43E-01	2.17E+00
	LU-172	181.53		20.60		2.916100	-4.79E+00	3.63E+00
		810.06		16.63	8.03E+00		3.15E+01	8.88E+00
		912.12		15.25	1.87E+01		-5.20E-01	1.33E+00
		1093.66		62.50	2.91E+00	2 500 01	-1.40E-01	4.52E-01
	LU-173	100.72		5.24	9.36E-01	3.52E-01	2.13E-01	1.69E-01
		272.11		21.20	3.52E-01	1 100 01	6.81E-03	5.22E-02
	HF-175	343.40		84.00	1.10E-01	1.10E-01		2.46E-01
	LU-176	88.34		13.30	5.05E-01	7.005-02	1.39E-01	3.76E-02
		201.83		86.00	7.77E-02	•	-9.11E-03	3.76E-02
		306.78		94.00	7.00E-02	4 00- 01	2.06E-02	9.26E-02
	TA-182	67.75		41.20	1.90E-01	1.90E-01	3.09E-02	
		1121.30		34.90	5.11E-01		5.37E-01	2.40E-01
		1189.05		16.23	7.31E-01		-1.91E-02	3.30E-01
		1221.41		26.98	5.32E-01		-1.23E-01	2.44E-01
		1231.02		11.44	1.23E+00		5.95E-02	5.65E-01
	IR-192	308.46		29.68	2.78E-01	1.82E-01	2.09E-02	1.32E-01
		468.07		48.10	1.82E-01		5.81E-03	8.51E-02
	HG-203	279.19		77.30	1.37E-01	1.37E-01	7.54E-02	6.57E-02
	BI-207	569.67		97.72	8.47E-02	8.47E-02	-3.55E-03	3.97E-02
		1063.62		74.90	1.12E-01		-8.62E-03	5.01E-02
+	TL-208	583.14	*	30.22	4.11E-01	4.72E-02	7.54E-01	1.97E-01
		860.37		4.48	2.22E+00		6.28E-01	1.03E+00
		2614.66	*	35.85	4.72E-02		7.15E-01	0.00E+00
	BI-210M	262.00		45.00	1.44E-01	1.44E-01	2.00E-02	6.91E-02
		300.00		23.00	3.43E-01		-1.03E+00	1.65E-01
+	PB-210	46.50	*	4.25	2.68E+00	2.68E+00	1.59E+00	1.31E+00
	PB-211	404.84		2.90	2.51E+00	2.51E+00	-2.65E - 01	1.19E+00
		831.96		2.90	2.89E+00		-5.74E-01	1.32E+00
+	BI-212	727.17	*	11.80	9.92E-01	9.92E-01	7.06E-01	4.69E-01
		1620.62		2.75	3.37E+00		8.37E-02	1.46E+00
+	PB-212	238.63	×	44.60	2.68E-01	2.68E-01	1.08E+00	1.31E-01
•	1	300.09	*	3.41	3.85E+00	∵.	2.21E+00	1.88E+00
+	BI-214	609.31	*	46.30	2.42E-01	2.42E-01	1.31E+00	1.15E-01
r	2. 2	1120.29	*	15.10	9.21E-01		1.45E+00	4.30E-01
		1764.49	*	15.80	7.60E-01		1.28E+00	3.38E-01
		2204.22		4.98	2.22E+00		4.57E-01	9.58E-01
+	PB-214	295.21	*	19.19	6.68E-01	2.48E-01	1.43E+00	3.26E-01
Т	ID CII	351.92	*	37.19	2.48E-01		1.34E+00	1.19E-01
		J J 4 . J Z			_ ,			

1603102-06

SEDIMENT 2016-03-16B DUP

•	Nuclide	Energy		Yield(%)	Line MDA	Nuclide MDA	Activity	Dec. Level (pCi/grams)
	Name	(keV)			(pCi/grams)	(pCi/grams)	(pCi/grams)	(pc//grams)
	RN-219	401.80		6.50	1.12E+00	1.12E+00	-6.04E-02	5.30E-01
	RA-223	323.87		3.88	1.59E+00	1.59E+00	-8.66E-01	7.52E-01
	RA-224	240.98		3.95	3.21E+00	3.21E+00	1.55E+01	1.57E+00
	RA-225	40.00	•	31.00	1.19E+00	1.19E+00	3.67E-01	5.74E-01
+	RA-226	186.21	*	3.28	2.72E+00	2.72E+00	2.74E+00	1.33E+00
	TH-227	50.10		8.40	8.62E-01	8.62E-01	-1.57E-01	4.18E-01
		236.00		11.50	9.01E-01	•	1.39E+00	4.40E-01
		256.20		6.30	9.98E-01		-4.29E-01	4.78E-01
+	AC-228	338.32	*	11.40	8.37E-01	5.07E-01	9.08E-01	4.04E-01
`	110 220	911.07	*	27.70	5.07E-01		9.33E-01	2.40E-01
		969.11	*	16.60	6.35E-01		9.15E-01	2.92E-01
	TH-230	48.44		16.90	5.03E-01	5.03E-01	4.19E-01	2.44E-01
	111 230	62.85		4.60	1.59E+00		1.14E+00	7.74E-01
		67.67		0.37	1.79E+01		2.91E+00	8.72E+00
	PA-231	283.67		1.60	3.93E+00	3.14E+00	2.42E-02	1.88E+00
	FR 231	302.67		2.30	3.14E+00	•	1.09E+00	1.50E+00
	TH-231	25.64		14.70	3.20E+00	9.29E-01	1.55E+00	1.55E+00
	111 251	84.21		6.40	9.29E-01		-4.50E-02	4.52E-01
	PA-233	311.98		38.60	3.51E-01	3.51F-01	5.77E-02	1.67E-01
	PA-234	131.20		20.40	2.52E-01	2.52E-01	2.16E-02	1.22E-01
	FA-234	733.99		8.80	8.85E-01		2.34E-01	4.06E-01
		946.00		12.00	6.68E-01		-5.55E-01	3.00E-01
	PA-234M	1001.03		0.92	1.07E+01	1.07E+01	-8.85E-01	4.87E+00
+	TH-234	63.29	*	3.80	2.83E+00	2.83E+00	2.01E+00	1.39E+00
11"	U-235	143.76		10.50	4.82E-01	4.82E-01	-2.19E-01	2.33E-01
	0 233	163.35		4.70	1.02E+00		-3.37E-02	4.90E-01
		205.31		4.70	1.49E+00		2.78E-01	7.20E-01
	NP-237	86.50		12.60	5.24E-01	5.24E-01	3.25E-01	2.56E-01
	NP-239	106.10		22.70	7.60E+02	7.60E+02	1.65E+02	3.67E+02
	NF-239	228.18		10.70	2.14E+03	•	-3.86E+02	1.03E+03
		277.60		14.10	1.80E+03		9.78E+02	8.65E+02
	AM-241	59.54		35.90	1.82E-01	1.82E-01	-1.87E-01	8.82E-02
ı	AM-241 AM-243	74.67	*	66.00	1.84E-01	1.84E-01	2.24E-01	9.05E-02
+	AM-243 CM-243	209.75		3.29	2.17E+00	4.98E-01	1.69E+00	1.05E+00
	CM-243	228.14		10.60	5.92E-01		-1.07E-01	2.85E-01
		277.60		14.00	4.98E-01		2.70E-01	2.39E-01

^{+ =} Nuclide identified during the nuclide identification

No Action Level results available for reporting purposes.

⁼ Energy line found in the spectrum

> = MDA value not calculated

^{@ =} Half-life too short to be able to perform the decay correction

1603102-06

SEDIMENT 2016-03-16B DUP

DATA REVIEW COMMENTS REPORT

Creation Date

Comment

User

No Data Review Comments Entered.

Sample Title: SEDIMENT 2016-03-16B DUP

Elapsed Live time: Elapsed Real Time: 3600 3611

~: -:		,	,		ı		1	
Channel					0	0	0	0
1:	0	0 134	0 1 59	0 124	85	92	7 <i>7</i>	88
9:	4	66	48	69	50	77	74	72
17:	71 61	59	59	62	42	54	55	67
25:		40	41	81	47	46	52	57
33:	50 58	61	52	68	54	65	151	72
41:	63	64	63	67	76	64	69	92
49: 57:	71	64	75	93	82	84	120	159
57: 65:	106	95	93	92	112	106	100	103
73:	103	131	224	246	249	384	120	87
81:	103	89	70	104	118	85	113	167
89:	98	108	117	82	162	143	81	71
97;	64	61	57	67	56	58	50	56
105:	61	60	52	54	57	48	53	. 60
113:	61	68	46	62	44	55	58	59
121:	50	63	58	43	57	45	58	68
129:	73	59	53	50	55	55	38	47
137:	62	44	50	63	55	42	47	61
145:	63	44	65	51	57	49	45	46
153:	51	59	57	48	38	54	50	42
161:	43	40	49	30	34	45	51	54
169:	35	43	2.7	39	55	48	35	46
177:	44	41	50	40	42	33	55	33
185:	43	115	107	42	40	42	40	48
193:	37	34	37	47	39	57	47	47 r.r
201:	37	50	29	43	40	52	45	55
209:	46	48	46	49	28	29	29 30	32 32
217:	42	33	36	31	23	31 37	30	32 34
225:	32	22	33	24	32	81	330	163
233:	32	27	39	25	34	21	21	25
241:	47	96	79	34	23 23	29	21	23 27
249:	29	25	31	32	23	23	26	34
257 :	22	28	27 20	32 22	30	2.3 37	48	23
265:	17	29 26	26	18	34	29	33	26
273:	21 25			22	13	20	27	22
281: 289:	18			21	15	31		155
209; 297;	45				46			22
305:					20			16
313:	18			17	18			16
321:	13			14	15			16
329:	24			17	25			15
337:	18				19			17
345:	20				18			203
353:	167							17
361:	11						12	20

369: 15 13 19 15 11 18 19 14

Sample Title: SEDIMENT 2016-03-16B DUP

801: 2 7 6 10 7 8 8 4

Sample Title: SEDIMENT 2016-03-16B DUP

						,		
Channel 809:	 3	 4	- -	2 .	4	8	5	6
817:	4	4	7	2 5	7	5	7	7
825: 833:	4 3	6 .1	7 7	5 4	7 9	ິບ ຊ	7 3	5 9
841:	5 5	3	3	8	4	8 5	4	4
849:	4	5	3	4	2	7	7	7
857: 865:	5 7	5 . 5	3 4	13 6	11 6	8 9	7 7	3 2
873 :	3	9	2	5	2	7		4
881:	7	9	4	6	4	7	9 5 5 5	1 5
839: 897:	5 5	4	6 4	11 10	9 6	7	5	7
905:	7	6	8	5	4	27	45	34
913: 921:	9	4 3	4 3	5 0	₫ 3	7 4	1 4	3 4
921 : 929:	3	3	6	4	6	9	6	3 6
937 :	2	3	6	4	4	8	7 7	6 3
945: 953:	4 4	1 10	5 9	4 6	0 5	3	6	4
961:	7	5	<u>4</u> 5	1.4	5 5 3	8 3 5 3	4	17
969: 977:	30 7	13 5	5 2	3 7	3 4	3 . 8	4 1	5 1
985:	3	4	3	7	2	6	7	4
993:	5	7	4	5 7	5 7	4 6	4 1	6
1001: 1009:	8 4.	3 2	6 7	/ 4	2	3	6	4 5 2 2
1017:	3	4	2	3	535551342	6	2	2
1025: 1033:	3 2	6 4	4 3	3 6	3 5	4 4	5 3	6
1041:	4	6	1	7	5		12	4
1049: 1057:	3 6	5 2	2 5	5 2	5 1	8 5 3	6 1	6 4
1065;	6	7	4	4 .	3	4	4	4
1073:	2 6	1 5	5 2	4 1	4.	4 1	4 2	3 4
1081: 1089:	3	5	7	7	6	5	3	2
1097:			3	2	5	4	4 6	6
1105: 1113:	2 8	9	6	3 3	ა 8	5	9	25
1121•	22	7	8	2	4	4	9	5
1129: 1137: 1145: 1153: 1161: 1169:	8 2 8 22 5 2	6 4 9 7 5 7 5 4	3 6 6 8 3 8 2 8 4 2 4	ა 2	6 3	4 5 4 3 3 2 4	3 8 9 6	1
1145:	4	5	2	7	3	2	9	0
1153:	6	4	8	2	2	4 ⊿	6 1	პ ვ
1169:	3	3	2	9	8	4	$\frac{4}{4}$	7
1 1 / / •	3	3	4	3	5 1	6 4	6 6	4
1185: 1193:	4 3 3 3 3 4	4 3 3 3 7	4 3 6	2 3 3 2 5 4 7 2 9 9 3 2 4 4 5 1 1 2	53846332285454629	4	1 6 6 2 9 4 3 4	6 2 5 1 1 0 3 3 7 4 6 8 4 5 4 5
1201:		0	6	4	4	7	9	4
1209: 1217:	9 4	7 10	4 8	5 11	ნ 2	7 4	4 3	5 4
1185: 1193: 1201: 1209: 1217: 1225:	10	8	4	2	Ġ,	3	4	5

1233: 11 6 6 4 11 14 12 9

Sample Title: SEDIMENT 2016-03-16B DUP

	Sampre	TTCTE.	SHOTHER	11 2010 0	/J 10D D	. VI		
Channel			i-	-				
1241:	3	3 ်	4	7	4	6	5 7	4
1249:	4	5	3 2	3	4	2		3 3
1257:	2	2	2	9	8	1	6	3
1265:	4	5	5	4	5	6	7	1
1273:	3	6	5 3 3	5	4	.3	2 3	6
1291:	12	3	3	3	. 3	4	3	4
1289:	12 6	2	1	5 3 5	1	5	4	3
1297:	2	2	1	5	4	4	1	3
1305:	1	3 5 2 5 3 2 2 2 2 1	3	5 3 3 3	5	1	2	4
1313:	4	2	3	. 3	5 3 3	2	1	1
1321:	4	1	0	3		4	3	1
1329:	2	3	1	3	4	2	0	1
1337:	4	4	1	1	2	2 3 1	3	. 1
1345:	2	3	0	3	4		3	2
1353:	2	3	4	1.	2	1	3	2
1361:	0	3	6	2	1	5	3 0 3 3 3 2 1	. 0
1369:	1	3 3 3 2 3	3 3 3 1	2	0	1	1	4
1377:	0	3	3	4	1	2	4	. 4
1385:	1	1	3	1	3 2	3	2	0
1393:	1	4		1		2	<u> </u>	6
1401:	5	2	1	2	1	3	5	1
1409:	3	3	1	0	5	4	3	0
1417:	4	0	1	1	± .	5	Ţ	0
1425:	2 2	0	1 3	0	2 1	7	2 3 5 3 1 5	3 1
1433:	2	3 3	1	0 0	Ą	5 1 2 3 2 3 4 5 1 2 1	0	1
1441: 1449:	2 1	2	1	2	1	3	0	0
1457:	1	7	48	128	125	49	4	Ŏ
1465:	1	í	1	1 120	3	0	2	5
1473:	1	0	i	$\dot{\hat{2}}$	2.	1	1	Ö
1481:	1	1	2	2	0	0	Õ	
1489:	2	$\overset{\circ}{1}$	ĩ	Õ	2		3	1 3
1497:	2 2 2 2	1	3	5	1	2 1 3	0	
1505;	$\frac{1}{2}$	1	ĺ	4	Zļ.	3	4	1 2
1513:	2	6	ī	Ō	0	1	1	3
1521:	1		2	2	1	1	4	0
1521: 1529:	0	2	4	3	1	0	. 1	2
1527・		2 2 3 2	4 2 0	2 3 2 1 2 0	1 1 1 2 2 1 1	0 2 0 2 0	0	1
1545: 1553: 1561: 1569: 1577:	1 2 1	2	0	1	1	0	0	1
1553:	1	0	1	2	1	2	0	1
1561:	. 0	1	1	O	2	0	0	3
1569:	0	1 1 2 1	1 1 0 2	0	2	1 3 2 0	2	0
1577:	€ 0	1		0	1	1	2	3
1585 :	1	2	4	6	1	3	4	1
1593:	7	1	4	1	0	2	0	0
1601:	1		Ō	2	0		1	2
1609:	0	Ü	0	2	1	0	3	5
1617:	1	1	3	1	1	1	0	7
1625:	0	3	1	0 6 1 2 2 1 2	3	1 5 1	1	2
1633:	0	ī	Ü		2	1	0	Ú
1641:	0	1 3 1 1 0	0 3 0 2 1 4	0 2 3	1 3 2 1 0	Ţ	0	
1649:	0	1	1	2	Ü	0	0	2
1657:	2	0	4	3	4	1	1	U

ō

.

C

O

1.

Ú.

1.

0

1 1 0 0

2073:

2081:

2089:

 $\bar{2}$ 0

C

0 0

ũ

0

0

Channel	Data	Report			4/13/2916	11:13:3	30 AM		Page
2097:		1	1	ñ	0	1	2	7	1
	Samp	ple Titl	e:	SEDIMEN	T 2016-03-	16B DUP			
Chanel 2103: 21131: 2129: 211375: 211453: 211453: 21169:			-1101002100005100011202000011100112120001101001022000000	0100011022023120102202000100011000011020000100001000000	1001100121101200011002200211100000110000110000	01010100020101000000111022100110120001001	1110000002112000101301110011110010002100011010010200	0300100001002100010030220001002020000010130000010000	0000001013020012200111111010010010200300000103100011

Channel	Data Re	port		4/13/2019	3 11:13:	:30 AM		Page
2529:	0	0	0	0	Ó	0	1	0
	Sample	Title:	SEDIMEN	IT 2016-03	3-16B DU	P		
Chane: 2537: 2545: 25561: 25577: 25569: 256097: 256097: 256097: 256097: 256097: 266175: 266175: 266175: 266175: 266175: 266175: 266175: 266175: 266175: 266175: 2661775: 27745: 2		Title:	SEDIMEN	1T 2916-01 111100105000000000000000000000000000	16B DU	001000110600000000000000000000000000000	011000101400011001010000000000000000000	

4/13/2016 11:13:30 AM Page Channel Data Report 2961: 0 1 0 0 0 0 0 Sample Title: SEDIMENT 2016-03-16B DUP Channel | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | -----

Channel	Data	Repo	ort	4	/13/2016	11:13:3	30 AM		Page	
3393:		0	0	0	0	С	0	0	0	
	Samp	ole T	Title:	SEDIMENT	2016-03-	16B DUP	la la la la la la la la la la la la la l			
Channel 3401: 3409: 3409: 3417: 34253: 34419: 34457: 34457: 34457: 3465: 34657: 3569: 35600: 35600: 366577: 3769: 37769:		010000100011100100000100000000000000000	000000000000000000000000000000000000000	100000000000000000000000000000000000000	000000010000001000000000000000000000	000000001000100000100000000000000000		020000000000000000000000000000000000000		

Channel	Data Re	eport		4/13/20	016 11:1	13:30 AM		Page 10
3825:	0	0	0	0	0	2	0	0
-	Sample	e Title:	SEDIME	NT 2016	-03-16B I	OUP.		
Channel 3833: 3841: 3849: 3857: 3865: 3873: 3889: 3897: 3905: 3913: 3929: 3929: 3945: 3969: 3969: 3969: 3969: 4009: 4009: 4009: 4009: 4009: 4009: 4009: 4009: 4009: 4009: 4009: 4009: 4009: 40057: 4065:		Title: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SEDIME	NT 2016	000000000000000000000000000000000000000	000000000000000000000000000000000000000		
4073: 4081: 4089:	0 0 0	0 0 0	0 0 0	1 0 0	Ō	0	0	0 0 0

0000035710.CNF Live Time :3600.000 sec Real Time :3611.380 sec Start: 1: 0.7(keV) Stop : 4096:4097.0(keV) Acq. Start :Wed Apr 13 10:13:02 2016 105-AM-268-109 SN-126 Counts-log scale Channel

ROI Type: 1 ROI Type: 2

**************************** ***** GENIE QUALITY ASSURANCE

Last Results Report 4/11/16 5:51:27 AM

OA File:

\\OR-GAMMA1\ApexRoot\Countrocm\QA\D000000002B.QCK

GE2 Detector: Geometry: <None> Certificate: <None>

Sample ID:

Sample Desc:

Sample Quantity:

Sample Date:

4/11/16 5:36:12 AM

Measurement Date:

4/11/16 5:36:14 AM Elapsed Live Time: 900.0 seconds Elapsed Real Time: 900.1 seconds

Parameter Description [Mean +/- Std. Dev.]

Value

Deviation/Flags < LU : SD : UD : BS >

DAILY BKG CT RATE GE2

4.1300E+000

3.9193E-002

[SD:-2.6135E+035+/-*****]

: : :

9 samples exhibit a bias trend. Trend Test: The last

Flags Key:

LU = Lower/Upper Bounds Test (Ab = Above, Be = Below)

SD = Sample Driven N-Sigma Test (In = Investigate, Ac = Action)

UD = User Driven N-Sigma Test (In = Investigate, Ac = Action) BS = Measurement Bias Test (In = Investigate, Ac = Action)

\\OR-GAMMA1\ApexRoot\Countroom\QA\D000000002GAS-1401C.QC

****************** ***** GENIE QUALITY ASSURANCE *******************

> Last Results Report 4/11/16 5:30:15 AM

QA File:

Detector: GE2

Geometry: <None>
Certificate: GAS-1401

Sample ID: QA Calibration C

Sample Desc: QA Count

Sample Quantity: 1.0000E+000

Sample Date: 10/1/14 12:00:00 AM

Measurement Date: 4/11/16 5:14:33 AM

Flanced Live Time: 900 0 seconds Elapsed Live Time: 900.0 seconds
Elapsed Real Time: 930.7 seconds

Parameter Description Value Deviation/Flags (Mean +/- Std. Dev.] Value Control Peak centroid 59.54kev 5.9180E+001 Peak centroid 59.54kev 5.9180E+001 Boundary Limits: [5.800E+001, 6.100E+001] < : : Peak centroid 661.65 kev 6.6155E+002 Boundary Limits: [6.600E+002, 6.640E+002] < : : Peak centroid 1332.49 ke 1.3326E+003 Boundary Limits: [1.331E+003, 1.334E+003] < : : Peak centroid 1836.1 kev 1.8364E+003 Boundary Limits: [1.834E+003, 1.838E+003] < : : Trend Test: The last 9 samples exhibit a bias trend. 1.7284E+000 Peak FWHM Am-241 Boundary Limits: [5.000E-001, 3.000E+000] < : : Peak FWHM Cs-137 2.0175E+000 Boundary Limits: [5.000E-001, 3.000E+000] < : : 2.1448E+000 Peak FWHM Co-60 Boundary Limits: [5.000E-001, 3.000E+000] < : : Trend Test: The last 9 samples exhibit a bias trend. Peak FWHM Y-88 2.5054E+000 Peak FWHM Y-88 2.5064E+000

Boundary Limits: [5.000E-001, 3.000E+000] < : : Decay corrected activity 1.5304E+005 Boundary Limits: [1.224E-001, 1.836E-001] < : : Decay corrected activity 6.1745E+004 Boundary Limits: [4.971E-002, 7.457E-002] < : :

Last Measurement Q.A. Report 4/11/16 5:30:15 AM Page 2 Decay corrected activity 9.8872E+004 Boundary Limits: [7.978E-002, 1.197E-001] < : : > Deviation/Flags Value Parameter Description < LU : SD : UD : BS > [Mean +/- Std. Dev.] Decay corrected activity 2.0127E+005 Boundary Limits: [1.714E-001, 2.571E-001] < : : > (Ab = Above, Be = Below)LU = Lower/Upper Bounds Test Flags Key: SD = Sample Driven N-Sigma Test (In = Investigate, Ac = Action) UD = User Driven N-Sigma Test (In = Investigate, Ac = Action)
BS = Measurement Bias Test (In = Investigate, Ac = Action)

BS = Measurement Bias Test

*************************** ***** GENIE OUALITY ASSÛRANCE

Last Results Report 4/13/16 6:09:37 AM

QA File:

\\OR-GAMMA1\ApexRoot\Countroom\QA\D00000003B.QCK

GE3 Detector: Geometry: <None> Certificate: <None>

Sample ID:

Sample Desc:

Sample Quantity:

Sample Date:

A/13/16

S:54:22 AM

Measurement Date:

A/13/16

COORD

A/13/16

A/13/16

COORD

A/13/16

A/13/16

A/13/16

A/13/16 Elapsed Live Time: 900.0 seconds Elapsed Real Time: 902.8 seconds

Parameter Description [Mean +/- Std. Dev.] Value

Deviation/Flags < LU : SD : UD : BS >

DATLY BKG CT RATE GE3

Flags Key:

2.5560E+003

2.0501E-001 : : :

ISD 2.2684E+003+/-1402.6j

LU = Lower/Upper Bounds Test (Ab = Above, Be = Below)

SD = Sample Driven N-Sigma Test (In = Investigate, Ac = Action)
UD = User Driven N-Sigma Test (In = Investigate, Ac = Action)
BS = Measurement Bias Test (In = Investigate, Ac = Action)

**************************** ***** GENIE QUALITY ASSURANCE ********************

> Last Results Report 4/13/16 6:56:20 AM

QA File: \\OR-GAMMA1\ApexRoot\Countroom\QA\D000000003GAS-1402C.QC

Detector: GE3

Geometry: <None>
Certificate: GAS-1402
Sample ID: QA Calibration C
Sample Desc: QA Count
Sample Quantity: 1.0000E+000
Sample Date: 10/1/14 12:00:00 AM
Measurement Date: 4/13/16 6:40:39 AM
Elapsed Live Time: 900.0 seconds
Elapsed Real Time: 928.7 seconds

Parameter Description Value Deviation/Flags < LU : SD : UD : BS > [Mean +/- Std. Dev.] Peak centroid 59.54 kev 6.0000E+001 Boundary Limits: [5.800E+001, 6.100E+001] < : . : > Trend Test: The last 9 samples exhibit a bias trend. Peak centroid 661.65 kev 6.6162E+002 Boundary Limits: [6.600E+002, 6.640E+002] < : : Peak centroid 1332.49 ke 1.3321E-003 Boundary Limits: [1.331E+003, 1.334E+003] < : : Peak centroid 1836.1 kev 1.8353E+003 Boundary Limits: [1.833E+003, 1.838E+003] < : : 1.3999E+000 Peak FWHM Am-241 Boundary Limits: [5.000E-001, 3.000E+000] < : : Trend Test: The last 9 samples exhibit a bias trend. 1.9986E+000 Peak FWHM Cs-137 Boundary Limits: [5.000E-001, 3.000E+000] < : : 2.2064E+000 Peak FWHM Co-60 Boundary Limits: [5.000E-001, 3.000E+000] < : : Peak FWHM Y-88 2.5989E+000 Boundary Limits: [5.000E-001, 3.000E+000] < : : Decay corrected activity 1.7378E+005 Boundary Limits: [1.223E-001, 1.834E-001] < : : Decay corrected activity 6.4429E+004 Boundary Limits: [4.969E-002, 7.453E-002] < : : >

Last Measurem	ment Q.A. Report	4/13/16	6:56:2	MA 0		Page	2	
Decay correct Boundary Lim	ed activity 9. hits: [7.972E-002,	.7895E+004 1.120E-001]	<	:	:	:	>	
Parameter Des [Mean +/- St Decay correct Boundary Lin		Value .9927E+005 2.569E-001]	. <	LO:	iation SD:	UD : E	3S >	
Flags Key:	LU = Lower/Upper Bo SD = Sample Driven UD = User Driven No BS = Measurement Bo	N-Sigma Test -Sigma Test	(In = (In =	Inve Inve	e, Be stigat stigat stigat	e, Ac e, Ac	= Ac $= Ac$	tion)